Cargando…
Oxide Materials for Thermoelectric Conversion
Thermoelectric technology has emerged as a prominent area of research in the past few decades for harnessing waste heat and improving the efficiency of next-generation renewable energy technologies. There has been rapid progress in the development of high-performance thermoelectric materials, as mea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421396/ https://www.ncbi.nlm.nih.gov/pubmed/37570865 http://dx.doi.org/10.3390/molecules28155894 |
Sumario: | Thermoelectric technology has emerged as a prominent area of research in the past few decades for harnessing waste heat and improving the efficiency of next-generation renewable energy technologies. There has been rapid progress in the development of high-performance thermoelectric materials, as measured by the dimensionless figure of merit (ZT = S(2) · σ · κ(−1)). Several heavy-metal-based thermoelectric materials with commercial-level performance (ZT = 1) have so far been proposed. However, the extensive application of these materials still faces challenges due to their low thermal/chemical stability, high toxicity, and limited abundance in the Earth’s crust. In contrast, oxide-based thermoelectric materials, such as ZnO, SrTiO(3), layered cobalt oxides, etc., have attracted growing interest as they can overcome the limitations of their heavy-metal-based counterparts. In this review, we summarize the recent research progress and introduce improvement strategies in oxide-based thermoelectric materials. This will provide an overview of their development history and design schemes, ultimately aiding in enhancing the overall performance of oxide-based thermoelectric materials. |
---|