Cargando…
Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment
Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton ther...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421420/ https://www.ncbi.nlm.nih.gov/pubmed/37570485 http://dx.doi.org/10.3390/nano13152167 |
_version_ | 1785088975707308032 |
---|---|
author | Zavestovskaya, Irina N. Popov, Anton L. Kolmanovich, Danil D. Tikhonowski, Gleb V. Pastukhov, Andrei I. Savinov, Maxim S. Shakhov, Pavel V. Babkova, Julia S. Popov, Anton A. Zelepukin, Ivan V. Grigoryeva, Maria S. Shemyakov, Alexander E. Klimentov, Sergey M. Ryabov, Vladimir A. Prasad, Paras N. Deyev, Sergey M. Kabashin, Andrei V. |
author_facet | Zavestovskaya, Irina N. Popov, Anton L. Kolmanovich, Danil D. Tikhonowski, Gleb V. Pastukhov, Andrei I. Savinov, Maxim S. Shakhov, Pavel V. Babkova, Julia S. Popov, Anton A. Zelepukin, Ivan V. Grigoryeva, Maria S. Shemyakov, Alexander E. Klimentov, Sergey M. Ryabov, Vladimir A. Prasad, Paras N. Deyev, Sergey M. Kabashin, Andrei V. |
author_sort | Zavestovskaya, Irina N. |
collection | PubMed |
description | Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment. |
format | Online Article Text |
id | pubmed-10421420 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104214202023-08-12 Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment Zavestovskaya, Irina N. Popov, Anton L. Kolmanovich, Danil D. Tikhonowski, Gleb V. Pastukhov, Andrei I. Savinov, Maxim S. Shakhov, Pavel V. Babkova, Julia S. Popov, Anton A. Zelepukin, Ivan V. Grigoryeva, Maria S. Shemyakov, Alexander E. Klimentov, Sergey M. Ryabov, Vladimir A. Prasad, Paras N. Deyev, Sergey M. Kabashin, Andrei V. Nanomaterials (Basel) Article Proton therapy is one of the promising radiotherapy modalities for the treatment of deep-seated and unresectable tumors, and its efficiency can further be enhanced by using boron-containing substances. Here, we explore the use of elemental boron (B) nanoparticles (NPs) as sensitizers for proton therapy enhancement. Prepared by methods of pulsed laser ablation in water, the used B NPs had a mean size of 50 nm, while a subsequent functionalization of the NPs by polyethylene glycol improved their colloidal stability in buffers. Laser-synthesized B NPs were efficiently absorbed by MNNG/Hos human osteosarcoma cells and did not demonstrate any remarkable toxicity effects up to concentrations of 100 ppm, as followed from the results of the MTT and clonogenic assay tests. Then, we assessed the efficiency of B NPs as sensitizers of cancer cell death under irradiation by a 160.5 MeV proton beam. The irradiation of MNNG/Hos cells at a dose of 3 Gy in the presence of 80 and 100 ppm of B NPs led to a 2- and 2.7-fold decrease in the number of formed cell colonies compared to control samples irradiated in the absence of NPs. The obtained data unambiguously evidenced the effect of a strong proton therapy enhancement mediated by B NPs. We also found that the proton beam irradiation of B NPs leads to the generation of reactive oxygen species (ROS), which evidences a possible involvement of the non-nuclear mechanism of cancer cell death related to oxidative stress. Offering a series of advantages, including a passive targeting option and the possibility of additional theranostic functionalities based on the intrinsic properties of B NPs (e.g., photothermal therapy or neutron boron capture therapy), the proposed concept promises a major advancement in proton beam-based cancer treatment. MDPI 2023-07-26 /pmc/articles/PMC10421420/ /pubmed/37570485 http://dx.doi.org/10.3390/nano13152167 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zavestovskaya, Irina N. Popov, Anton L. Kolmanovich, Danil D. Tikhonowski, Gleb V. Pastukhov, Andrei I. Savinov, Maxim S. Shakhov, Pavel V. Babkova, Julia S. Popov, Anton A. Zelepukin, Ivan V. Grigoryeva, Maria S. Shemyakov, Alexander E. Klimentov, Sergey M. Ryabov, Vladimir A. Prasad, Paras N. Deyev, Sergey M. Kabashin, Andrei V. Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title | Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title_full | Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title_fullStr | Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title_full_unstemmed | Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title_short | Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment |
title_sort | boron nanoparticle-enhanced proton therapy for cancer treatment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421420/ https://www.ncbi.nlm.nih.gov/pubmed/37570485 http://dx.doi.org/10.3390/nano13152167 |
work_keys_str_mv | AT zavestovskayairinan boronnanoparticleenhancedprotontherapyforcancertreatment AT popovantonl boronnanoparticleenhancedprotontherapyforcancertreatment AT kolmanovichdanild boronnanoparticleenhancedprotontherapyforcancertreatment AT tikhonowskiglebv boronnanoparticleenhancedprotontherapyforcancertreatment AT pastukhovandreii boronnanoparticleenhancedprotontherapyforcancertreatment AT savinovmaxims boronnanoparticleenhancedprotontherapyforcancertreatment AT shakhovpavelv boronnanoparticleenhancedprotontherapyforcancertreatment AT babkovajulias boronnanoparticleenhancedprotontherapyforcancertreatment AT popovantona boronnanoparticleenhancedprotontherapyforcancertreatment AT zelepukinivanv boronnanoparticleenhancedprotontherapyforcancertreatment AT grigoryevamarias boronnanoparticleenhancedprotontherapyforcancertreatment AT shemyakovalexandere boronnanoparticleenhancedprotontherapyforcancertreatment AT klimentovsergeym boronnanoparticleenhancedprotontherapyforcancertreatment AT ryabovvladimira boronnanoparticleenhancedprotontherapyforcancertreatment AT prasadparasn boronnanoparticleenhancedprotontherapyforcancertreatment AT deyevsergeym boronnanoparticleenhancedprotontherapyforcancertreatment AT kabashinandreiv boronnanoparticleenhancedprotontherapyforcancertreatment |