Cargando…
Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations
The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry–Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the re...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421843/ https://www.ncbi.nlm.nih.gov/pubmed/37566175 http://dx.doi.org/10.1186/s11671-023-03879-5 |
_version_ | 1785089061396938752 |
---|---|
author | Dixit, Kirtan P. Gregory, Don A. |
author_facet | Dixit, Kirtan P. Gregory, Don A. |
author_sort | Dixit, Kirtan P. |
collection | PubMed |
description | The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry–Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry–Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change. |
format | Online Article Text |
id | pubmed-10421843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-104218432023-08-13 Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations Dixit, Kirtan P. Gregory, Don A. Discov Nano Research The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry–Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry–Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change. Springer US 2023-08-11 /pmc/articles/PMC10421843/ /pubmed/37566175 http://dx.doi.org/10.1186/s11671-023-03879-5 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Dixit, Kirtan P. Gregory, Don A. Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title | Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title_full | Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title_fullStr | Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title_full_unstemmed | Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title_short | Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations |
title_sort | nanoscale modeling of dynamically tunable planar optical absorbers utilizing inas and insb in metal-oxide-semiconductor–metal configurations |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421843/ https://www.ncbi.nlm.nih.gov/pubmed/37566175 http://dx.doi.org/10.1186/s11671-023-03879-5 |
work_keys_str_mv | AT dixitkirtanp nanoscalemodelingofdynamicallytunableplanaropticalabsorbersutilizinginasandinsbinmetaloxidesemiconductormetalconfigurations AT gregorydona nanoscalemodelingofdynamicallytunableplanaropticalabsorbersutilizinginasandinsbinmetaloxidesemiconductormetalconfigurations |