Cargando…

Taraxasterol suppresses the proliferation and tumor growth of androgen-independent prostate cancer cells through the FGFR2-PI3K/AKT signaling pathway

Prostate cancer (PCa) is prevalent among older men and difficult to survive after metastasis. It is urgent to find new drugs and treatments. Several studies show that taraxasterol (TAX) has important anti-inflammatory, anti-oxidative and anti-tumor effects. However, the function and mechanisms of TA...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jinqiu, Xin, Chulin, Yin, Guangfen, Li, Juan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421874/
https://www.ncbi.nlm.nih.gov/pubmed/37567936
http://dx.doi.org/10.1038/s41598-023-40344-w
Descripción
Sumario:Prostate cancer (PCa) is prevalent among older men and difficult to survive after metastasis. It is urgent to find new drugs and treatments. Several studies show that taraxasterol (TAX) has important anti-inflammatory, anti-oxidative and anti-tumor effects. However, the function and mechanisms of TAX in PCa remain unclear. Here, we found that TAX could significantly suppress the viability and growth of androgen-independent PCa cells and down-regulate the expression of c-Myc and cyclin D1 in vitro. Mechanistically, PI3K/AKT signaling pathway was weakened and the expression of FGFR2 was reduced after TAX treatment in androgen-independent PCa cells. Moreover, TAX evidently inhibited the tumor growth in nude mice and the expression of c-Myc, cyclin D1, p-AKT and FGFR2 were down-regulated in xenograft tumor. These results indicate that TAX suppresses the proliferation of androgen-independent PCa cells via inhibiting the activation of PI3K/AKT signaling pathway and the expression of FGFR2, which means TAX may be a novel anti-tumor agent for later PCa treatment.