Cargando…
Comparisons of the prediction models for undiagnosed diabetes between machine learning versus traditional statistical methods
We compared the prediction performance of machine learning-based undiagnosed diabetes prediction models with that of traditional statistics-based prediction models. We used the 2014–2020 Korean National Health and Nutrition Examination Survey (KNHANES) (N = 32,827). The KNHANES 2014–2018 data were u...
Autores principales: | Choi, Seong Gyu, Oh, Minsuk, Park, Dong–Hyuk, Lee, Byeongchan, Lee, Yong-ho, Jee, Sun Ha, Jeon, Justin Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421881/ https://www.ncbi.nlm.nih.gov/pubmed/37567907 http://dx.doi.org/10.1038/s41598-023-40170-0 |
Ejemplares similares
-
The predictive value of resting heart rate in identifying undiagnosed diabetes in Korean adults: Korea National Health and Nutrition Examination Survey
por: Park, Dong-Hyuk, et al.
Publicado: (2022) -
Development of prediction models of spontaneous ureteral stone passage through machine learning: Comparison with conventional statistical analysis
por: Park, Jee Soo, et al.
Publicado: (2021) -
Unanticipated difficult endotracheal intubation due to an undiagnosed pharyngeal web
por: Oh, Jong In, et al.
Publicado: (2013) -
A liquid-liquid transition can exist in monatomic transition metals with a positive melting slope
por: Lee, Byeongchan, et al.
Publicado: (2016) -
Predicting incident dementia in cerebral small vessel disease: comparison of machine learning and traditional statistical models
por: Li, Rui, et al.
Publicado: (2023)