Cargando…

Development of novel SARS-CoV-2 viral vectors

The authentic SARS-CoV-2 requires to be handled in Biosafety Level 3 laboratories, which restrains investigation by the broader scientific community. Here, we report the development of a novel SARS-CoV-2 viral vector composed of all 4 SARS-CoV-2 structural proteins, the packaging signal sequence of...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Huan, Liu, Dexi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421939/
https://www.ncbi.nlm.nih.gov/pubmed/37567900
http://dx.doi.org/10.1038/s41598-023-40370-8
Descripción
Sumario:The authentic SARS-CoV-2 requires to be handled in Biosafety Level 3 laboratories, which restrains investigation by the broader scientific community. Here, we report the development of a novel SARS-CoV-2 viral vector composed of all 4 SARS-CoV-2 structural proteins, the packaging signal sequence of SARS-CoV-2, a reporter gene, and an RNA amplification component of Venezuelan equine encephalitis virus (VEEV). This VEE-SARS-CoV-2 viral vector transduces target cells in an ACE2-dependent manner, and all 4 structural proteins of SARS-CoV-2 are indispensable for its transduction activity. Comparative studies show that the incorporation of the VEEV self-amplification mechanism increases the gene expression level by ~ 65-fold and extends the transgene expression up to 11 days in transduced cells. Additionally, we demonstrated the significant applications of this new VEE-SARS-CoV-2 vector for neutralizing antibody quantification and antiviral drug testing. The VEE-SARS-CoV-2 vectors developed will be an important and versatile tool for investigating SARS-CoV-2 molecular virology, developing antiviral agents targeting receptor binding, and studying RNA genome packaging and function of the essential but not well studied structural proteins of SARS-CoV-2.