Cargando…
XGDAG: explainable gene–disease associations via graph neural networks
MOTIVATION: Disease gene prioritization consists in identifying genes that are likely to be involved in the mechanisms of a given disease, providing a ranking of such genes. Recently, the research community has used computational methods to uncover unknown gene–disease associations; these methods ra...
Autores principales: | Mastropietro, Andrea, De Carlo, Gianluca, Anagnostopoulos, Aris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421968/ https://www.ncbi.nlm.nih.gov/pubmed/37531293 http://dx.doi.org/10.1093/bioinformatics/btad482 |
Ejemplares similares
-
Protocol to explain graph neural network predictions using an edge-centric Shapley value-based approach
por: Mastropietro, Andrea, et al.
Publicado: (2022) -
Explainable Multilayer Graph Neural Network for cancer gene prediction
por: Chatzianastasis, Michail, et al.
Publicado: (2023) -
Evaluating explainability for graph neural networks
por: Agarwal, Chirag, et al.
Publicado: (2023) -
Explainable graph neural networks for organic cages
por: Yuan, Qi, et al.
Publicado: (2022) -
Identifying Candidate Gene–Disease Associations via Graph Neural Networks
por: Cinaglia, Pietro, et al.
Publicado: (2023)