Cargando…
Zero-Shot Neural Decoding with Semi-Supervised Multi-View Embedding
Zero-shot neural decoding aims to decode image categories, which were not previously trained, from functional magnetic resonance imaging (fMRI) activity evoked when a person views images. However, having insufficient training data due to the difficulty in collecting fMRI data causes poor generalizat...
Autores principales: | Akamatsu, Yusuke, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422201/ https://www.ncbi.nlm.nih.gov/pubmed/37571685 http://dx.doi.org/10.3390/s23156903 |
Ejemplares similares
-
Few-Shot Personalized Saliency Prediction Based on Adaptive Image Selection Considering Object and Visual Attention†
por: Moroto, Yuya, et al.
Publicado: (2020) -
Brain Decoding of Multiple Subjects for Estimating Visual Information Based on a Probabilistic Generative Model
por: Higashi, Takaaki, et al.
Publicado: (2022) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022) -
Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
por: Wang, Senhong, et al.
Publicado: (2021)