Cargando…
BoxStacker: Deep Reinforcement Learning for 3D Bin Packing Problem in Virtual Environment of Logistics Systems
Manufacturing systems need to be resilient and self-organizing to adapt to unexpected disruptions, such as product changes or rapid order, in supply chain changes while increasing the automation level of robotized logistics processes to cope with the lack of human experts. Deep Reinforcement Learnin...
Autores principales: | Murdivien, Shokhikha Amalana, Um, Jumyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422206/ https://www.ncbi.nlm.nih.gov/pubmed/37571710 http://dx.doi.org/10.3390/s23156928 |
Ejemplares similares
-
Adjudication for the Supply of Fixed and Mobile Racks and Overhead Stackers for the Central Store
Publicado: (1967) -
On the Impact of Fuzzy Constraints in the Variable Size and Cost Bin Packing Problem
por: Herrera-Franklin, Jorge, et al.
Publicado: (2020) -
A Preliminary Study on Score-Based Hyper-heuristics for Solving the Bin Packing Problem
por: Silva-Gálvez, A., et al.
Publicado: (2020) -
Benchmark dataset and instance generator for real-world three-dimensional bin packing problems
por: Osaba, Eneko, et al.
Publicado: (2023) -
Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design
por: Schlüter, Ross D, et al.
Publicado: (1995)