Cargando…
GACN: Generative Adversarial Classified Network for Balancing Plant Disease Dataset and Plant Disease Recognition
Plant diseases are a critical threat to the agricultural sector. Therefore, accurate plant disease classification is important. In recent years, some researchers have used synthetic images of GAN to enhance plant disease recognition accuracy. In this paper, we propose a generative adversarial classi...
Autores principales: | Wang, Xiaotian, Cao, Weiqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422207/ https://www.ncbi.nlm.nih.gov/pubmed/37571626 http://dx.doi.org/10.3390/s23156844 |
Ejemplares similares
-
Composite GaN–C–Ga (“GaCN”)
Layers with Tunable Refractive Index
por: Banerjee, Sourish, et al.
Publicado: (2018) -
LHC analysis-specific datasets with Generative Adversarial Networks
por: Hashemi, Bobak, et al.
Publicado: (2019) -
BNLoop-GAN: a multi-loop generative adversarial model on brain network learning to classify Alzheimer’s disease
por: Cao, Yu, et al.
Publicado: (2023) -
Improving Image-Based Plant Disease Classification With Generative Adversarial Network Under Limited Training Set
por: Bi, Luning, et al.
Publicado: (2020) -
Federated transfer learning for auxiliary classifier generative adversarial networks: framework and industrial application
por: Guo, Wei, et al.
Publicado: (2023)