Cargando…
Forgery Cyber-Attack Supported by LSTM Neural Network: An Experimental Case Study
This work is concerned with the vulnerability of a network industrial control system to cyber-attacks, which is a critical issue nowadays. This is because an attack on a controlled process can damage or destroy it. These attacks use long short-term memory (LSTM) neural networks, which model dynamica...
Autores principales: | Zarzycki, Krzysztof, Chaber, Patryk, Cabaj, Krzysztof, Ławryńczuk, Maciej, Marusak, Piotr, Nebeluk, Robert, Plamowski, Sebastian, Wojtulewicz, Andrzej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422211/ https://www.ncbi.nlm.nih.gov/pubmed/37571561 http://dx.doi.org/10.3390/s23156778 |
Ejemplares similares
-
Digital Twins in the Practice of High-Energy Physics Experiments: A Gas System for the Multipurpose Detector
por: Chaber, Patryk, et al.
Publicado: (2022) -
LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
Long Short-Term Memory Neural Networks for Modeling Dynamical Processes and Predictive Control: A Hybrid Physics-Informed Approach
por: Zarzycki, Krzysztof, et al.
Publicado: (2023) -
Fast Real-Time Model Predictive Control for a Ball-on-Plate Process
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
Computationally Efficient Nonlinear Model Predictive Control Using the L(1) Cost-Function
por: Ławryńczuk, Maciej, et al.
Publicado: (2021)