Cargando…
Conditional Generative Models for Dynamic Trajectory Generation and Urban Driving
This work explores methodologies for dynamic trajectory generation for urban driving environments by utilizing coarse global plan representations. In contrast to state-of-the-art architectures for autonomous driving that often leverage lane-level high-definition (HD) maps, we focus on minimizing req...
Autores principales: | Paz, David, Zhang, Hengyuan, Xiang, Hao, Liang, Andrew, Christensen, Henrik I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422223/ https://www.ncbi.nlm.nih.gov/pubmed/37571547 http://dx.doi.org/10.3390/s23156764 |
Ejemplares similares
-
Probabilistic Semantic Mapping for Autonomous Driving in Urban Environments
por: Zhang, Hengyuan, et al.
Publicado: (2023) -
Tutorial on High-Definition Map Generation for Automated Driving in Urban Environments
por: Jeong, Jinseop, et al.
Publicado: (2022) -
Trajectory Generation for Flexible-Joint Space Manipulators
por: Carabis, David S., et al.
Publicado: (2022) -
Vehicle trajectory prediction and generation using LSTM models and GANs
por: Rossi, Luca, et al.
Publicado: (2021) -
Generating 3D molecules conditional on receptor binding sites with deep generative models
por: Ragoza, Matthew, et al.
Publicado: (2022)