Cargando…
Laser Sensing and Chemometric Analysis for Rapid Detection of Oregano Fraud
World health is increasingly threatened by the growing number of spice-related food hazards. Further development of reliable methods for rapid, non-targeted identification of counterfeit ingredients within the supply chain is needed. ENEA has developed a portable, user-friendly photoacoustic laser s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422250/ https://www.ncbi.nlm.nih.gov/pubmed/37571583 http://dx.doi.org/10.3390/s23156800 |
Sumario: | World health is increasingly threatened by the growing number of spice-related food hazards. Further development of reliable methods for rapid, non-targeted identification of counterfeit ingredients within the supply chain is needed. ENEA has developed a portable, user-friendly photoacoustic laser system for food fraud detection, based on a quantum cascade laser and multivariate calibration. Following a study on the authenticity of saffron, the instrument was challenged with a more elusive adulterant, olive leaves in oregano. The results show that the reported method of laser sensing and chemometric analysis was able to detect adulterants at mass ratios of at least 20% in less than five minutes. |
---|