Cargando…
ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
Multi-step traffic forecasting has always been extremely challenging due to constantly changing traffic conditions. Advanced Graph Convolutional Networks (GCNs) are widely used to extract spatial information from traffic networks. Existing GCNs for traffic forecasting are usually shallow networks th...
Autores principales: | Cui, Zhengyan, Zhang, Junjun, Noh, Giseop, Park, Hyun Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422259/ https://www.ncbi.nlm.nih.gov/pubmed/37571733 http://dx.doi.org/10.3390/s23156950 |
Ejemplares similares
-
BHGAttN: A Feature-Enhanced Hierarchical Graph Attention Network for Sentiment Analysis
por: Zhang, Junjun, et al.
Publicado: (2022) -
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
por: Jeon, Hyeon-Ju, et al.
Publicado: (2022) -
Graph Spatio-Temporal Networks for Manufacturing Sales Forecast and Prevention Policies in Pandemic Era
por: Lee, Chia-Yen, et al.
Publicado: (2023) -
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems
por: Zhao, Wei, et al.
Publicado: (2023)