Cargando…
Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts
The friction stir welding (FSW) of thermoplastic polymers is gradually receiving attention because of its advantages including high efficiency and pollution-free manufacturing. The extrusion-based additive manufacturing (EAM) of polymers has also become one of the main processing methods for thermop...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422264/ https://www.ncbi.nlm.nih.gov/pubmed/37571182 http://dx.doi.org/10.3390/polym15153288 |
_version_ | 1785089164392267776 |
---|---|
author | Liu, Jin-Feng Zhou, Ying-Guo Chen, Shu-Jin Ren, Shao-Qiang Zou, Jun |
author_facet | Liu, Jin-Feng Zhou, Ying-Guo Chen, Shu-Jin Ren, Shao-Qiang Zou, Jun |
author_sort | Liu, Jin-Feng |
collection | PubMed |
description | The friction stir welding (FSW) of thermoplastic polymers is gradually receiving attention because of its advantages including high efficiency and pollution-free manufacturing. The extrusion-based additive manufacturing (EAM) of polymers has also become one of the main processing methods for thermoplastic parts. In this paper, a hybrid manufacturing method for the FSW process and EAM technology is proposed and explored. The effects of the FSW process using two different welding tools on the mechanical behaviors of 3D printing polymer parts were compared and investigated and the corresponding mechanism was analyzed. The results show that the appropriate welding tool is beneficial for eliminating the anisotropy and decreasing the porosity of 3D-printed parts. Therefore, the improving effects of the FSW process on the mechanical behaviors of the EAM parts are verified. The mechanism was attributed to the high-speed rotation of the welding tool with the appropriate shape, which can promote the flow of polymer melt in the welding region, leading to the formation of dense structures caused by the entanglement of the molecular chains. This study may provide some assistance in modern industrial manufacturing for the processing of large custom components. |
format | Online Article Text |
id | pubmed-10422264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104222642023-08-13 Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts Liu, Jin-Feng Zhou, Ying-Guo Chen, Shu-Jin Ren, Shao-Qiang Zou, Jun Polymers (Basel) Article The friction stir welding (FSW) of thermoplastic polymers is gradually receiving attention because of its advantages including high efficiency and pollution-free manufacturing. The extrusion-based additive manufacturing (EAM) of polymers has also become one of the main processing methods for thermoplastic parts. In this paper, a hybrid manufacturing method for the FSW process and EAM technology is proposed and explored. The effects of the FSW process using two different welding tools on the mechanical behaviors of 3D printing polymer parts were compared and investigated and the corresponding mechanism was analyzed. The results show that the appropriate welding tool is beneficial for eliminating the anisotropy and decreasing the porosity of 3D-printed parts. Therefore, the improving effects of the FSW process on the mechanical behaviors of the EAM parts are verified. The mechanism was attributed to the high-speed rotation of the welding tool with the appropriate shape, which can promote the flow of polymer melt in the welding region, leading to the formation of dense structures caused by the entanglement of the molecular chains. This study may provide some assistance in modern industrial manufacturing for the processing of large custom components. MDPI 2023-08-03 /pmc/articles/PMC10422264/ /pubmed/37571182 http://dx.doi.org/10.3390/polym15153288 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Jin-Feng Zhou, Ying-Guo Chen, Shu-Jin Ren, Shao-Qiang Zou, Jun Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title | Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title_full | Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title_fullStr | Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title_full_unstemmed | Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title_short | Effects of Friction Stir Welding on the Mechanical Behaviors of Extrusion-Based Additive Manufactured Polymer Parts |
title_sort | effects of friction stir welding on the mechanical behaviors of extrusion-based additive manufactured polymer parts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422264/ https://www.ncbi.nlm.nih.gov/pubmed/37571182 http://dx.doi.org/10.3390/polym15153288 |
work_keys_str_mv | AT liujinfeng effectsoffrictionstirweldingonthemechanicalbehaviorsofextrusionbasedadditivemanufacturedpolymerparts AT zhouyingguo effectsoffrictionstirweldingonthemechanicalbehaviorsofextrusionbasedadditivemanufacturedpolymerparts AT chenshujin effectsoffrictionstirweldingonthemechanicalbehaviorsofextrusionbasedadditivemanufacturedpolymerparts AT renshaoqiang effectsoffrictionstirweldingonthemechanicalbehaviorsofextrusionbasedadditivemanufacturedpolymerparts AT zoujun effectsoffrictionstirweldingonthemechanicalbehaviorsofextrusionbasedadditivemanufacturedpolymerparts |