Cargando…
Progressively Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation
Unsupervised image-to-image translation has received considerable attention due to the recent remarkable advancements in generative adversarial networks (GANs). In image-to-image translation, state-of-the-art methods use unpaired image data to learn mappings between the source and target domains. Ho...
Autores principales: | Lee, Hong-Yu, Li, Yung-Hui, Lee, Ting-Hsuan, Aslam, Muhammad Saqlain |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422294/ https://www.ncbi.nlm.nih.gov/pubmed/37571641 http://dx.doi.org/10.3390/s23156858 |
Ejemplares similares
-
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution
por: Huang, Chi-En, et al.
Publicado: (2021) -
Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening
por: Chikontwe, Philip, et al.
Publicado: (2021) -
Unsupervised Image-to-Image Translation: A Review
por: Hoyez, Henri, et al.
Publicado: (2022) -
Regularity Normalization: Neuroscience-Inspired Unsupervised Attention across Neural Network Layers †
por: Lin, Baihan
Publicado: (2021)