Cargando…
Robust Fusion Kalman Estimator of the Multi-Sensor Descriptor System with Multiple Types of Noises and Packet Loss
Under the influence of multiple types of noises, missing measurement, one-step measurement delay and packet loss, the robust Kalman estimation problem is studied for the multi-sensor descriptor system (MSDS) in this paper. Moreover, the established MSDS model describes uncertain-variance noises, mul...
Autores principales: | Zheng, Jie, Cui, Wenxia, Sun, Sian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422304/ https://www.ncbi.nlm.nih.gov/pubmed/37571750 http://dx.doi.org/10.3390/s23156968 |
Ejemplares similares
-
Sequential Fusion Filter for State Estimation of Nonlinear Multi-Sensor Systems with Cross-Correlated Noise and Packet Dropout Compensation
por: Tan, Liguo, et al.
Publicado: (2023) -
Robust Sliding Mode Control for Stochastic Uncertain Discrete Systems with Two-Channel Packet Dropouts and Time-Varying Delays
por: Sun, Sian, et al.
Publicado: (2022) -
Track Fusion Fractional Kalman Filter for the Multisensor Descriptor Fractional Systems
por: Zhang, Bo, et al.
Publicado: (2022) -
A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
por: Zheng, Binqi, et al.
Publicado: (2018) -
Adaptive Unscented Kalman Filter for Target Tacking with Time-Varying Noise Covariance Based on Multi-Sensor Information Fusion
por: Wang, Dapeng, et al.
Publicado: (2021)