Cargando…
A 256 × 256 LiDAR Imaging System Based on a 200 mW SPAD-Based SoC with Microlens Array and Lightweight RGB-Guided Depth Completion Neural Network
Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422305/ https://www.ncbi.nlm.nih.gov/pubmed/37571709 http://dx.doi.org/10.3390/s23156927 |
Sumario: | Light detection and ranging (LiDAR) technology, a cutting-edge advancement in mobile applications, presents a myriad of compelling use cases, including enhancing low-light photography, capturing and sharing 3D images of fascinating objects, and elevating the overall augmented reality (AR) experience. However, its widespread adoption has been hindered by the prohibitive costs and substantial power consumption associated with its implementation in mobile devices. To surmount these obstacles, this paper proposes a low-power, low-cost, single-photon avalanche detector (SPAD)-based system-on-chip (SoC) which packages the microlens arrays (MLAs) and a lightweight RGB-guided sparse depth imaging completion neural network for 3D LiDAR imaging. The proposed SoC integrates an 8 × 8 SPAD macropixel array with time-to-digital converters (TDCs) and a charge pump, fabricated using a 180 nm bipolar-CMOS-DMOS (BCD) process. Initially, the primary function of this SoC was limited to serving as a ranging sensor. A random MLA-based homogenizing diffuser efficiently transforms Gaussian beams into flat-topped beams with a 45° field of view (FOV), enabling flash projection at the transmitter. To further enhance resolution and broaden application possibilities, a lightweight neural network employing RGB-guided sparse depth complementation is proposed, enabling a substantial expansion of image resolution from 8 × 8 to quarter video graphics array level (QVGA; 256 × 256). Experimental results demonstrate the effectiveness and stability of the hardware encompassing the SoC and optical system, as well as the lightweight features and accuracy of the algorithmic neural network. The state-of-the-art SoC-neural network solution offers a promising and inspiring foundation for developing consumer-level 3D imaging applications on mobile devices. |
---|