Cargando…

Can Plants Sense Humans? Using Plants as Biosensors to Detect the Presence of Eurythmic Gestures

This paper describes the preliminary results of measuring the impact of human body movements on plants. The scope of this project is to investigate if a plant perceives human activity in its vicinity. In particular, we analyze the influence of eurythmic gestures of human actors on lettuce and beans....

Descripción completa

Detalles Bibliográficos
Autores principales: de la Cal, Luis, Gloor, Peter A., Weinbeer, Moritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422342/
https://www.ncbi.nlm.nih.gov/pubmed/37571752
http://dx.doi.org/10.3390/s23156971
Descripción
Sumario:This paper describes the preliminary results of measuring the impact of human body movements on plants. The scope of this project is to investigate if a plant perceives human activity in its vicinity. In particular, we analyze the influence of eurythmic gestures of human actors on lettuce and beans. In an eight-week experiment, we exposed rows of lettuce and beans to weekly eurythmic movements (similar to Qi Gong) of a eurythmist, while at the same time measuring changes in voltage between the roots and leaves of lettuce and beans using the plant spikerbox. We compared this experimental group of vegetables to a control group of vegetables whose voltage differential was also measured while not being exposed to eurythmy. We placed a plant spikerbox connected to lettuce or beans in the vegetable plot while the eurythmist was performing their gestures about 2 m away; a second spikerbox was connected to a control plant 20 m away. Using t-tests, we found a clear difference between the experimental and the control group, which was also verified with a machine learning model. In other words, the vegetables showed a noticeably different pattern in electric potentials in response to eurythmic gestures.