Cargando…
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
Images captured under complex conditions frequently have low quality, and image performance obtained under low-light conditions is poor and does not satisfy subsequent engineering processing. The goal of low-light image enhancement is to restore low-light images to normal illumination levels. Althou...
Autores principales: | Zhen, Tong, Peng, Daxin, Li, Zhihui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422370/ https://www.ncbi.nlm.nih.gov/pubmed/37571773 http://dx.doi.org/10.3390/s23156990 |
Ejemplares similares
-
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Abirami R., Nandhini, et al.
Publicado: (2021) -
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
por: Yu, Wenshuo, et al.
Publicado: (2023) -
A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement
por: Zhang, Jingsi, et al.
Publicado: (2021) -
Generative adversarial networks for image generation
por: Mao, Xudong, et al.
Publicado: (2021) -
Super-Resolution Reconstruction of Terahertz Images Based on Residual Generative Adversarial Network with Enhanced Attention
por: Hou, Zhongwei, et al.
Publicado: (2023)