Cargando…
Hybrid Multi-Label Classification Model for Medical Applications Based on Adaptive Synthetic Data and Ensemble Learning
In recent years, both machine learning and computer vision have seen growth in the use of multi-label categorization. SMOTE is now being utilized in existing research for data balance, and SMOTE does not consider that nearby examples may be from different classes when producing synthetic samples. As...
Autores principales: | Priyadharshini, M., Banu, A. Faritha, Sharma, Bhisham, Chowdhury, Subrata, Rabie, Khaled, Shongwe, Thokozani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422387/ https://www.ncbi.nlm.nih.gov/pubmed/37571619 http://dx.doi.org/10.3390/s23156836 |
Ejemplares similares
-
Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System
por: Henry, Azriel, et al.
Publicado: (2023) -
Semi-supervised multi-label collective classification ensemble for functional genomics
por: Wu, Qingyao, et al.
Publicado: (2014) -
LitCovid ensemble learning for COVID-19 multi-label classification
por: Gu, Jinghang, et al.
Publicado: (2022) -
Hybrid SFNet Model for Bone Fracture Detection and Classification Using ML/DL
por: Yadav, Dhirendra Prasad, et al.
Publicado: (2022) -
Large-scale online semantic indexing of biomedical articles via an ensemble of multi-label classification models
por: Papanikolaou, Yannis, et al.
Publicado: (2017)