Cargando…
Metric Learning-Guided Semi-Supervised Path-Interaction Fault Diagnosis Method for Extremely Limited Labeled Samples under Variable Working Conditions
The lack of labeled data and variable working conditions brings challenges to the application of intelligent fault diagnosis. Given this, extracting labeled information and learning distribution-invariant representation provides a feasible and promising way. Enlightened by metric learning and semi-s...
Autores principales: | Yang, Zheng, Chen, Fei, Xu, Binbin, Ma, Boquan, Qu, Zege, Zhou, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422390/ https://www.ncbi.nlm.nih.gov/pubmed/37571734 http://dx.doi.org/10.3390/s23156951 |
Ejemplares similares
-
Semi-Supervised Classification of PolSAR Images Based on Co-Training of CNN and SVM with Limited Labeled Samples
por: Zhao, Mingjun, et al.
Publicado: (2023) -
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
por: Mao, Weiyun, et al.
Publicado: (2022) -
Semi-Supervised Framework with Autoencoder-Based Neural Networks for Fault Prognosis
por: da Rosa, Tiago Gaspar, et al.
Publicado: (2022) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018) -
Cross-Machine Fault Diagnosis with Semi-Supervised Discriminative Adversarial Domain Adaptation
por: Wang, Xiaodong, et al.
Publicado: (2020)