Cargando…
Optimized Classifier Learning for Face Recognition Performance Boost in Security and Surveillance Applications
Face recognition has become an integral part of modern security processes. This paper introduces an optimization approach for the quantile interval method (QIM), a promising classifier learning technique used in face recognition to create face templates and improve recognition accuracy. Our research...
Autores principales: | Poměnková, Jitka, Malach, Tobiáš |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422394/ https://www.ncbi.nlm.nih.gov/pubmed/37571795 http://dx.doi.org/10.3390/s23157012 |
Ejemplares similares
-
Lightweight and Resource-Constrained Learning Network for Face Recognition with Performance Optimization
por: Li, Hsiao-Chi, et al.
Publicado: (2020) -
Face recognition for video surveillance with aligned facial landmarks learning
por: Lin, Jirui, et al.
Publicado: (2018) -
Research on the Privacy Security of Face Recognition Technology
por: Pang, Luning
Publicado: (2022) -
Facial recognition from DNA using face-to-DNA classifiers
por: Sero, Dzemila, et al.
Publicado: (2019) -
Face Averages Enhance User Recognition for Smartphone Security
por: Robertson, David J., et al.
Publicado: (2015)