Cargando…
Coal Flow Foreign Body Classification Based on ESCBAM and Multi-Channel Feature Fusion
Foreign bodies often cause belt scratching and tearing, coal stacking, and plugging during the transportation of coal via belt conveyors. To overcome the problems of large parameters, heavy computational complexity, low classification accuracy, and poor processing speed in current classification net...
Autores principales: | Kou, Qiqi, Ma, Haohui, Xu, Jinyang, Jiang, He, Cheng, Deqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422397/ https://www.ncbi.nlm.nih.gov/pubmed/37571614 http://dx.doi.org/10.3390/s23156831 |
Ejemplares similares
-
EEG Emotion Classification Network Based on Attention Fusion of Multi-Channel Band Features
por: Zhu, Xiaoliang, et al.
Publicado: (2022) -
Research on Coal
Gangue Recognition Based on Multi-source
Time–Frequency Domain Feature Fusion
por: Zhang, Yao, et al.
Publicado: (2023) -
Multi-channel feature fusion attention Dehazing network
por: Zou, Changjun, et al.
Publicado: (2023) -
New classification of ocular foreign bodies
por: Shukla, Bhartendu
Publicado: (2016) -
A Faster and Lighter Detection Method for Foreign Objects in Coal Mine Belt Conveyors
por: Luo, Bingxin, et al.
Publicado: (2023)