Cargando…
Machine Learning Model Application and Comparison in Actuated Traffic Signal Forecasting
Traffic signal forecasting plays a significant role in intelligent traffic systems since it can predict upcoming traffic signal without using traditional radio-based direct communication with infrastructures, which causes high risk in the communication security. Previously, mathematical and statisti...
Autores principales: | Xie, Feng, Naumann, Sebastian, Czogalla, Olaf, Zadek, Hartmut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422400/ https://www.ncbi.nlm.nih.gov/pubmed/37571702 http://dx.doi.org/10.3390/s23156912 |
Ejemplares similares
-
Evaluating the effectiveness of machine learning techniques in forecasting the severity of traffic accidents
por: Obasi, Izuchukwu Chukwuma, et al.
Publicado: (2023) -
Dynamic Learning Framework for Smooth-Aided Machine-Learning-Based Backbone Traffic Forecasts
por: Hassan, Mohamed Khalafalla, et al.
Publicado: (2022) -
A Proposed Machine Learning Model for Forecasting Impact of Traffic-Induced Vibrations on Buildings
por: Jakubczyk-Gałczyńska, Anna, et al.
Publicado: (2020) -
Space-Distributed Traffic-Enhanced LSTM-Based Machine Learning Model for COVID-19 Incidence Forecasting
por: Muñoz-Organero, Mario
Publicado: (2022) -
A Deep Learning Framework About Traffic Flow Forecasting for Urban Traffic Emission Monitoring System
por: Yao, Baozhen, et al.
Publicado: (2022)