Cargando…

Defect Detection in Steel Using a Hybrid Attention Network

Defect detection in steel surface focuses on accurately identifying and precisely locating defects on the surface of steel materials. Methods of defect detection with deep learning have gained significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy o...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Mudan, Lu, Wentao, Xia, Jingbo, Wang, Yuhao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422419/
https://www.ncbi.nlm.nih.gov/pubmed/37571764
http://dx.doi.org/10.3390/s23156982
Descripción
Sumario:Defect detection in steel surface focuses on accurately identifying and precisely locating defects on the surface of steel materials. Methods of defect detection with deep learning have gained significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy of defect detection still needs to be improved. Aiming at this issue, a hybrid attention network is proposed in this paper. Firstly, a CBAM attention module is used to enhance the model’s ability to learn effective features. Secondly, an adaptively spatial feature fusion (ASFF) module is used to improve the accuracy by extracting multi-scale information of defects. Finally, the CIOU algorithm is introduced to optimize the training loss of the baseline model. The experimental results show that the performance of our method in this work is superior on the NEU-DET dataset, with an 8.34% improvement in mAP. Compared with major algorithms of object detection such as SSD, EfficientNet, YOLOV3, and YOLOV5, the mAP was improved by 16.36%, 41.68%, 20.79%, and 13.96%, respectively. This demonstrates that the mAP of our proposed method is higher than other major algorithms.