Cargando…
Defect Detection in Steel Using a Hybrid Attention Network
Defect detection in steel surface focuses on accurately identifying and precisely locating defects on the surface of steel materials. Methods of defect detection with deep learning have gained significant attention in research. Existing algorithms can achieve satisfactory results, but the accuracy o...
Autores principales: | Zhou, Mudan, Lu, Wentao, Xia, Jingbo, Wang, Yuhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422419/ https://www.ncbi.nlm.nih.gov/pubmed/37571764 http://dx.doi.org/10.3390/s23156982 |
Ejemplares similares
-
Intelligent Detection of Steel Defects Based on Improved Split Attention Networks
por: Hao, Zhiqiang, et al.
Publicado: (2022) -
PHAM-YOLO: A Parallel Hybrid Attention Mechanism Network for Defect Detection of Meter in Substation
por: Dong, Hao, et al.
Publicado: (2023) -
A Novel ST-YOLO Network for Steel-Surface-Defect Detection
por: Ma, Hongtao, et al.
Publicado: (2023) -
Research on steel rail surface defects detection based on improved YOLOv4 network
por: Mi, Zengzhen, et al.
Publicado: (2023) -
Photometric Stereo-Based Defect Detection System for Steel Components Manufacturing Using a Deep Segmentation Network
por: Saiz, Fátima A., et al.
Publicado: (2022)