Cargando…
Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny
A continuing trend in precision apiculture is to use computer vision methods to quantify characteristics of bee traffic in managed colonies at the hive’s entrance. Since traffic at the hive’s entrance is a contributing factor to the hive’s productivity and health, we assessed the potential of three...
Autores principales: | Kulyukin, Vladimir A., Kulyukin, Aleksey V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422429/ https://www.ncbi.nlm.nih.gov/pubmed/37571576 http://dx.doi.org/10.3390/s23156791 |
Ejemplares similares
-
A novel optimized tiny YOLOv3 algorithm for the identification of objects in the lawn environment
por: Wang, Xinyan, et al.
Publicado: (2022) -
Improved YOLOv4-tiny based on attention mechanism for skin detection
por: Li, Ping, et al.
Publicado: (2023) -
Adaptation of YOLOv7 and YOLOv7_tiny for Soccer-Ball Multi-Detection with DeepSORT for Tracking by Semi-Supervised System
por: Vicente-Martínez, Jorge Armando, et al.
Publicado: (2023) -
Improved YOLOv4-tiny network for real-time electronic component detection
por: Guo, Ce, et al.
Publicado: (2021) -
YOLOv4-Tiny-Based Coal Gangue Image Recognition and FPGA Implementation
por: Xu, Shanyong, et al.
Publicado: (2022)