Cargando…

Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents

The purpose of this study was to investigate associations between peak magnitudes of raw acceleration (g) from wrist- and hip-worn accelerometers and ground reaction force (GRF) variables in a large sample of children and adolescents. A total of 269 participants (127 boys, 142 girls; age: 12.3 ± 2.0...

Descripción completa

Detalles Bibliográficos
Autores principales: Brailey, Gemma, Metcalf, Brad, Price, Lisa, Cumming, Sean, Stiles, Victoria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422445/
https://www.ncbi.nlm.nih.gov/pubmed/37571725
http://dx.doi.org/10.3390/s23156943
Descripción
Sumario:The purpose of this study was to investigate associations between peak magnitudes of raw acceleration (g) from wrist- and hip-worn accelerometers and ground reaction force (GRF) variables in a large sample of children and adolescents. A total of 269 participants (127 boys, 142 girls; age: 12.3 ± 2.0 yr) performed walking, running, jumping (<5 cm; >5 cm) and single-leg hopping on a force plate. A GENEActiv accelerometer was worn on the left wrist, and an Actigraph GT3X+ was worn on the right wrist and hip throughout. Mixed-effects linear regression was used to assess the relationships between peak magnitudes of raw acceleration and loading. Raw acceleration from both wrist and hip-worn accelerometers was strongly and significantly associated with loading (all p’s < 0.05). Body mass and maturity status (pre/post-PHV) were also significantly associated with loading, whereas age, sex and height were not identified as significant predictors. The final models for the GENEActiv wrist, Actigraph wrist and Actigraph hip explained 81.1%, 81.9% and 79.9% of the variation in loading, respectively. This study demonstrates that wrist- and hip-worn accelerometers that output raw acceleration are appropriate for use to monitor the loading exerted on the skeleton and are able to detect short bursts of high-intensity activity that are pertinent to bone health.