Cargando…
Research on Wind Turbine Fault Detection Based on the Fusion of ASL-CatBoost and TtRSA
The internal structure of wind turbines is intricate and precise, although the challenging working conditions often give rise to various operational faults. This study aims to address the limitations of traditional machine learning algorithms in wind turbine fault detection and the imbalance of posi...
Autores principales: | Kong, Lingchao, Liang, Hongtao, Liu, Guozhu, Liu, Shuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422446/ https://www.ncbi.nlm.nih.gov/pubmed/37571525 http://dx.doi.org/10.3390/s23156741 |
Ejemplares similares
-
CatBoost for big data: an interdisciplinary review
por: Hancock, John T., et al.
Publicado: (2020) -
An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries
por: Chang, Wenfeng, et al.
Publicado: (2023) -
Structural control and fault detection of wind turbine systems
por: Karimi, Hamid Reza
Publicado: (2018) -
An SVM-Based Solution for Fault Detection in Wind Turbines
por: Santos, Pedro, et al.
Publicado: (2015) -
Ensemble Machine Learning of Gradient Boosting (XGBoost, LightGBM, CatBoost) and Attention-Based CNN-LSTM for Harmful Algal Blooms Forecasting
por: Ahn, Jung Min, et al.
Publicado: (2023)