Cargando…
Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures
Carbon concrete is a new, promising class of materials in the construction industry. This corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for medial shielding. This enables lean construction and the conservation of concrete and energy-intensive cement m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422523/ https://www.ncbi.nlm.nih.gov/pubmed/37571179 http://dx.doi.org/10.3390/polym15153285 |
_version_ | 1785089231548317696 |
---|---|
author | Wohlfahrt, Daniel Peller, Hannes Franz Maria Müller, Steffen Modler, Niels Mechtcherine, Viktor |
author_facet | Wohlfahrt, Daniel Peller, Hannes Franz Maria Müller, Steffen Modler, Niels Mechtcherine, Viktor |
author_sort | Wohlfahrt, Daniel |
collection | PubMed |
description | Carbon concrete is a new, promising class of materials in the construction industry. This corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for medial shielding. This enables lean construction and the conservation of concrete and energy-intensive cement manufacturing. Bar-type reinforcement is essential for heavily loaded structures. The newly developed helix pultrusion is the first process capable of producing carbon fiber-reinforced polymer (CFRP) reinforcement bars with a topological surface in a single pultrusion process step, with fiber orientation tailored to the specific loads. The manufacturing feasibility and load-bearing capacity were thoroughly tested and compared with other design and process variants. Approaches to increase stiffness and strength while maintaining good concrete anchorage have been presented and fabricated. Tensile testing of the helical rebar variants with a 7.2 mm lead-bearing cross-section was conducted using adapted wedge grips with a 300 mm restraint length. The new helix geometry variants achieved, on average, 40% higher strengths and almost reached the values of the base material. Concrete pull-out tests were carried out to evaluate the bond properties. The helix contour design caused the bar to twist out of the concrete test specimen. Utilizing the Rilem beam test setup, the helical contour bars could also be tested. Compared with the original helix variant, the pull-out forces could be increased from 8.5 kN to up to 22.4 kN, i.e., by a factor of 2.5. It was thus possible to derive a preferred solution that is optimally suited for use in carbon concrete. |
format | Online Article Text |
id | pubmed-10422523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104225232023-08-13 Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures Wohlfahrt, Daniel Peller, Hannes Franz Maria Müller, Steffen Modler, Niels Mechtcherine, Viktor Polymers (Basel) Article Carbon concrete is a new, promising class of materials in the construction industry. This corrosion-resistant reinforcement material leads to a reduction in the concrete cover required for medial shielding. This enables lean construction and the conservation of concrete and energy-intensive cement manufacturing. Bar-type reinforcement is essential for heavily loaded structures. The newly developed helix pultrusion is the first process capable of producing carbon fiber-reinforced polymer (CFRP) reinforcement bars with a topological surface in a single pultrusion process step, with fiber orientation tailored to the specific loads. The manufacturing feasibility and load-bearing capacity were thoroughly tested and compared with other design and process variants. Approaches to increase stiffness and strength while maintaining good concrete anchorage have been presented and fabricated. Tensile testing of the helical rebar variants with a 7.2 mm lead-bearing cross-section was conducted using adapted wedge grips with a 300 mm restraint length. The new helix geometry variants achieved, on average, 40% higher strengths and almost reached the values of the base material. Concrete pull-out tests were carried out to evaluate the bond properties. The helix contour design caused the bar to twist out of the concrete test specimen. Utilizing the Rilem beam test setup, the helical contour bars could also be tested. Compared with the original helix variant, the pull-out forces could be increased from 8.5 kN to up to 22.4 kN, i.e., by a factor of 2.5. It was thus possible to derive a preferred solution that is optimally suited for use in carbon concrete. MDPI 2023-08-03 /pmc/articles/PMC10422523/ /pubmed/37571179 http://dx.doi.org/10.3390/polym15153285 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wohlfahrt, Daniel Peller, Hannes Franz Maria Müller, Steffen Modler, Niels Mechtcherine, Viktor Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title | Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title_full | Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title_fullStr | Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title_full_unstemmed | Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title_short | Investigation of Helix-Pultruded CFRP Rebar Geometry Variants for Carbon-Reinforced Concrete Structures |
title_sort | investigation of helix-pultruded cfrp rebar geometry variants for carbon-reinforced concrete structures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422523/ https://www.ncbi.nlm.nih.gov/pubmed/37571179 http://dx.doi.org/10.3390/polym15153285 |
work_keys_str_mv | AT wohlfahrtdaniel investigationofhelixpultrudedcfrprebargeometryvariantsforcarbonreinforcedconcretestructures AT pellerhannesfranzmaria investigationofhelixpultrudedcfrprebargeometryvariantsforcarbonreinforcedconcretestructures AT mullersteffen investigationofhelixpultrudedcfrprebargeometryvariantsforcarbonreinforcedconcretestructures AT modlerniels investigationofhelixpultrudedcfrprebargeometryvariantsforcarbonreinforcedconcretestructures AT mechtcherineviktor investigationofhelixpultrudedcfrprebargeometryvariantsforcarbonreinforcedconcretestructures |