Cargando…
Efficient Feature-Selection-Based Stacking Model for Stress Detection Based on Chest Electrodermal Activity
Contemporary advancements in wearable equipment have generated interest in continuously observing stress utilizing various physiological indicators. Early stress detection can improve healthcare by lessening the negative effects of chronic stress. Machine learning (ML) methodologies have been modifi...
Autores principales: | Almadhor, Ahmad, Sampedro, Gabriel Avelino, Abisado, Mideth, Abbas, Sidra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422546/ https://www.ncbi.nlm.nih.gov/pubmed/37571448 http://dx.doi.org/10.3390/s23156664 |
Ejemplares similares
-
Wrist-Based Electrodermal Activity Monitoring for Stress Detection Using Federated Learning
por: Almadhor, Ahmad, et al.
Publicado: (2023) -
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
por: Bofill, Jherson, et al.
Publicado: (2023) -
A Survey of Image-Based Fault Monitoring in Additive Manufacturing: Recent Developments and Future Directions
por: Kim, Ryanne Gail, et al.
Publicado: (2023) -
Stress State Classification Based on Deep Neural Network and Electrodermal Activity Modeling
por: Vasile, Floriana, et al.
Publicado: (2023) -
An efficient approach for textual data classification using deep learning
por: Alqahtani, Abdullah, et al.
Publicado: (2022)