Cargando…

Intelligent Resource Allocation for V2V Communication with Spectrum–Energy Efficiency Maximization

Aiming to address the limitations of traditional resource allocation algorithms in the Internet of Vehicles (IoV), whereby they cannot meet the stringent demands for ultra-low latency and high reliability in vehicle-to-vehicle (V2V) communication, this paper proposes a wireless resource allocation a...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Chunning, Wang, Shumo, Song, Ping, Li, Ke, Song, Tiecheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422592/
https://www.ncbi.nlm.nih.gov/pubmed/37571579
http://dx.doi.org/10.3390/s23156796
Descripción
Sumario:Aiming to address the limitations of traditional resource allocation algorithms in the Internet of Vehicles (IoV), whereby they cannot meet the stringent demands for ultra-low latency and high reliability in vehicle-to-vehicle (V2V) communication, this paper proposes a wireless resource allocation algorithm for V2V communication based on the multi-agent deep Q-network (MDQN). The system model utilizes 5G network slicing technology as its fundamental feature and maximizes the weighted spectrum–energy efficiency (SEE) while satisfying reliability and latency constraints. In this approach, each V2V link is treated as an agent, and the state space, action, and reward function of MDQN are specifically designed. Through centralized training, the neural network parameters of MDQN are determined, and the optimal resource allocation strategy is achieved through distributed execution. Simulation results demonstrate the effectiveness of the proposed scheme in significantly improving the SEE of the network while maintaining a certain success rate for V2V link load transmission.