Cargando…
Deep Reinforcement Learning for Workload Prediction in Federated Cloud Environments
The Federated Cloud Computing (FCC) paradigm provides scalability advantages to Cloud Service Providers (CSP) in preserving their Service Level Agreement (SLA) as opposed to single Data Centers (DC). However, existing research has primarily focused on Virtual Machine (VM) placement, with less emphas...
Autores principales: | Ahamed, Zaakki, Khemakhem, Maher, Eassa, Fathy, Alsolami, Fawaz, Basuhail, Abdullah, Jambi, Kamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422605/ https://www.ncbi.nlm.nih.gov/pubmed/37571695 http://dx.doi.org/10.3390/s23156911 |
Ejemplares similares
-
Ensemble Model Based on Hybrid Deep Learning for Intrusion Detection in Smart Grid Networks
por: AlHaddad, Ulaa, et al.
Publicado: (2023) -
A security testing mechanism for detecting attacks in distributed software applications using blockchain
por: Algarni, Abdullah, et al.
Publicado: (2023) -
A Green Strategy for Federated and Heterogeneous Clouds with Communicating Workloads
por: Mateo, Jordi, et al.
Publicado: (2014) -
One- and Two-Phase Software Requirement Classification Using Ensemble Deep Learning
por: Rahimi, Nouf, et al.
Publicado: (2021) -
Multi-objectives reinforcement federated learning blockchain enabled Internet of things and Fog-Cloud infrastructure for transport data
por: Mohammed, Mazin Abed, et al.
Publicado: (2023)