Cargando…

A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors

In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications...

Descripción completa

Detalles Bibliográficos
Autores principales: Haider, Arsalan, Pigniczki, Marcell, Koyama, Shotaro, Köhler, Michael H., Haas, Lukas, Fink, Maximilian, Schardt, Michael, Nagase, Koji, Zeh, Thomas, Eryildirim, Abdulkadir, Poguntke, Tim, Inoue, Hideo, Jakobi, Martin, Koch, Alexander W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422612/
https://www.ncbi.nlm.nih.gov/pubmed/37571674
http://dx.doi.org/10.3390/s23156891
_version_ 1785089253984698368
author Haider, Arsalan
Pigniczki, Marcell
Koyama, Shotaro
Köhler, Michael H.
Haas, Lukas
Fink, Maximilian
Schardt, Michael
Nagase, Koji
Zeh, Thomas
Eryildirim, Abdulkadir
Poguntke, Tim
Inoue, Hideo
Jakobi, Martin
Koch, Alexander W.
author_facet Haider, Arsalan
Pigniczki, Marcell
Koyama, Shotaro
Köhler, Michael H.
Haas, Lukas
Fink, Maximilian
Schardt, Michael
Nagase, Koji
Zeh, Thomas
Eryildirim, Abdulkadir
Poguntke, Tim
Inoue, Hideo
Jakobi, Martin
Koch, Alexander W.
author_sort Haider, Arsalan
collection PubMed
description In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error  [Formula: see text]  of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain.
format Online
Article
Text
id pubmed-10422612
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104226122023-08-13 A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors Haider, Arsalan Pigniczki, Marcell Koyama, Shotaro Köhler, Michael H. Haas, Lukas Fink, Maximilian Schardt, Michael Nagase, Koji Zeh, Thomas Eryildirim, Abdulkadir Poguntke, Tim Inoue, Hideo Jakobi, Martin Koch, Alexander W. Sensors (Basel) Article In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error  [Formula: see text]  of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain. MDPI 2023-08-03 /pmc/articles/PMC10422612/ /pubmed/37571674 http://dx.doi.org/10.3390/s23156891 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Haider, Arsalan
Pigniczki, Marcell
Koyama, Shotaro
Köhler, Michael H.
Haas, Lukas
Fink, Maximilian
Schardt, Michael
Nagase, Koji
Zeh, Thomas
Eryildirim, Abdulkadir
Poguntke, Tim
Inoue, Hideo
Jakobi, Martin
Koch, Alexander W.
A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title_full A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title_fullStr A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title_full_unstemmed A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title_short A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
title_sort methodology to model the rain and fog effect on the performance of automotive lidar sensors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422612/
https://www.ncbi.nlm.nih.gov/pubmed/37571674
http://dx.doi.org/10.3390/s23156891
work_keys_str_mv AT haiderarsalan amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT pigniczkimarcell amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT koyamashotaro amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT kohlermichaelh amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT haaslukas amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT finkmaximilian amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT schardtmichael amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT nagasekoji amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT zehthomas amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT eryildirimabdulkadir amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT poguntketim amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT inouehideo amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT jakobimartin amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT kochalexanderw amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT haiderarsalan methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT pigniczkimarcell methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT koyamashotaro methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT kohlermichaelh methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT haaslukas methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT finkmaximilian methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT schardtmichael methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT nagasekoji methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT zehthomas methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT eryildirimabdulkadir methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT poguntketim methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT inouehideo methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT jakobimartin methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors
AT kochalexanderw methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors