Cargando…
A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors
In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422612/ https://www.ncbi.nlm.nih.gov/pubmed/37571674 http://dx.doi.org/10.3390/s23156891 |
_version_ | 1785089253984698368 |
---|---|
author | Haider, Arsalan Pigniczki, Marcell Koyama, Shotaro Köhler, Michael H. Haas, Lukas Fink, Maximilian Schardt, Michael Nagase, Koji Zeh, Thomas Eryildirim, Abdulkadir Poguntke, Tim Inoue, Hideo Jakobi, Martin Koch, Alexander W. |
author_facet | Haider, Arsalan Pigniczki, Marcell Koyama, Shotaro Köhler, Michael H. Haas, Lukas Fink, Maximilian Schardt, Michael Nagase, Koji Zeh, Thomas Eryildirim, Abdulkadir Poguntke, Tim Inoue, Hideo Jakobi, Martin Koch, Alexander W. |
author_sort | Haider, Arsalan |
collection | PubMed |
description | In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error [Formula: see text] of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain. |
format | Online Article Text |
id | pubmed-10422612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104226122023-08-13 A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors Haider, Arsalan Pigniczki, Marcell Koyama, Shotaro Köhler, Michael H. Haas, Lukas Fink, Maximilian Schardt, Michael Nagase, Koji Zeh, Thomas Eryildirim, Abdulkadir Poguntke, Tim Inoue, Hideo Jakobi, Martin Koch, Alexander W. Sensors (Basel) Article In this work, we introduce a novel approach to model the rain and fog effect on the light detection and ranging (LiDAR) sensor performance for the simulation-based testing of LiDAR systems. The proposed methodology allows for the simulation of the rain and fog effect using the rigorous applications of the Mie scattering theory on the time domain for transient and point cloud levels for spatial analyses. The time domain analysis permits us to benchmark the virtual LiDAR signal attenuation and signal-to-noise ratio (SNR) caused by rain and fog droplets. In addition, the detection rate (DR), false detection rate (FDR), and distance error [Formula: see text] of the virtual LiDAR sensor due to rain and fog droplets are evaluated on the point cloud level. The mean absolute percentage error (MAPE) is used to quantify the simulation and real measurement results on the time domain and point cloud levels for the rain and fog droplets. The results of the simulation and real measurements match well on the time domain and point cloud levels if the simulated and real rain distributions are the same. The real and virtual LiDAR sensor performance degrades more under the influence of fog droplets than in rain. MDPI 2023-08-03 /pmc/articles/PMC10422612/ /pubmed/37571674 http://dx.doi.org/10.3390/s23156891 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Haider, Arsalan Pigniczki, Marcell Koyama, Shotaro Köhler, Michael H. Haas, Lukas Fink, Maximilian Schardt, Michael Nagase, Koji Zeh, Thomas Eryildirim, Abdulkadir Poguntke, Tim Inoue, Hideo Jakobi, Martin Koch, Alexander W. A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title | A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title_full | A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title_fullStr | A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title_full_unstemmed | A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title_short | A Methodology to Model the Rain and Fog Effect on the Performance of Automotive LiDAR Sensors |
title_sort | methodology to model the rain and fog effect on the performance of automotive lidar sensors |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422612/ https://www.ncbi.nlm.nih.gov/pubmed/37571674 http://dx.doi.org/10.3390/s23156891 |
work_keys_str_mv | AT haiderarsalan amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT pigniczkimarcell amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT koyamashotaro amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT kohlermichaelh amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT haaslukas amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT finkmaximilian amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT schardtmichael amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT nagasekoji amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT zehthomas amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT eryildirimabdulkadir amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT poguntketim amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT inouehideo amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT jakobimartin amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT kochalexanderw amethodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT haiderarsalan methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT pigniczkimarcell methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT koyamashotaro methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT kohlermichaelh methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT haaslukas methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT finkmaximilian methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT schardtmichael methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT nagasekoji methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT zehthomas methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT eryildirimabdulkadir methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT poguntketim methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT inouehideo methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT jakobimartin methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors AT kochalexanderw methodologytomodeltherainandfogeffectontheperformanceofautomotivelidarsensors |