Cargando…
Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA
In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422621/ https://www.ncbi.nlm.nih.gov/pubmed/37571453 http://dx.doi.org/10.3390/s23156669 |
_version_ | 1785089256289468416 |
---|---|
author | Chavez, Selena Wdowinski, Shimon Lagomasino, David Castañeda-Moya, Edward Fatoyinbo, Temilola Moyer, Ryan P. Smoak, Joseph M. |
author_facet | Chavez, Selena Wdowinski, Shimon Lagomasino, David Castañeda-Moya, Edward Fatoyinbo, Temilola Moyer, Ryan P. Smoak, Joseph M. |
author_sort | Chavez, Selena |
collection | PubMed |
description | In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region. |
format | Online Article Text |
id | pubmed-10422621 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104226212023-08-13 Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA Chavez, Selena Wdowinski, Shimon Lagomasino, David Castañeda-Moya, Edward Fatoyinbo, Temilola Moyer, Ryan P. Smoak, Joseph M. Sensors (Basel) Article In September 2017, Hurricane Irma made landfall in South Florida, causing a great deal of damage to mangrove forests along the southwest coast. A combination of hurricane strength winds and high storm surge across the area resulted in canopy defoliation, broken branches, and downed trees. Evaluating changes in mangrove forest structure is significant, as a loss or change in mangrove forest structure can lead to loss in the ecosystems services that they provide. In this study, we used lidar remote sensing technology and field data to assess damage to the South Florida mangrove forests from Hurricane Irma. Lidar data provided an opportunity to investigate changes in mangrove forests using 3D high-resolution data to assess hurricane-induced changes at different tree structure levels. Using lidar data in conjunction with field observations, we were able to model aboveground necromass (AGN; standing dead trees) on a regional scale across the Shark River and Harney River within Everglades National Park. AGN estimates were higher in the mouth and downstream section of Shark River and higher in the downstream section of the Harney River, with higher impact observed in Shark River. Mean AGN estimates were 46 Mg/ha in Shark River and 38 Mg/ha in Harney River and an average loss of 29% in biomass, showing a significant damage when compared to other areas impacted by Hurricane Irma and previous disturbances in our study region. MDPI 2023-07-25 /pmc/articles/PMC10422621/ /pubmed/37571453 http://dx.doi.org/10.3390/s23156669 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chavez, Selena Wdowinski, Shimon Lagomasino, David Castañeda-Moya, Edward Fatoyinbo, Temilola Moyer, Ryan P. Smoak, Joseph M. Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title | Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title_full | Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title_fullStr | Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title_full_unstemmed | Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title_short | Estimating Structural Damage to Mangrove Forests Using Airborne Lidar Imagery: Case Study of Damage Induced by the 2017 Hurricane Irma to Mangroves in the Florida Everglades, USA |
title_sort | estimating structural damage to mangrove forests using airborne lidar imagery: case study of damage induced by the 2017 hurricane irma to mangroves in the florida everglades, usa |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422621/ https://www.ncbi.nlm.nih.gov/pubmed/37571453 http://dx.doi.org/10.3390/s23156669 |
work_keys_str_mv | AT chavezselena estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT wdowinskishimon estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT lagomasinodavid estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT castanedamoyaedward estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT fatoyinbotemilola estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT moyerryanp estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa AT smoakjosephm estimatingstructuraldamagetomangroveforestsusingairbornelidarimagerycasestudyofdamageinducedbythe2017hurricaneirmatomangrovesinthefloridaevergladesusa |