Cargando…

The association between exposure to volatile organic compounds and serum lipids in the US adult population

BACKGROUND AND AIM: Epidemiological evidence on the relationship between exposure to volatile organic compounds (VOCs), both single and mixed, and serum lipid levels is limited, and their relationship remains unclear. Our study aimed to investigate the associations of exposure to VOCs with serum lip...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wen-Yu, Fu, Yan-Peng, Tu, Hui, Zhong, Wen, Zhou, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422774/
https://www.ncbi.nlm.nih.gov/pubmed/37568143
http://dx.doi.org/10.1186/s12944-023-01895-z
Descripción
Sumario:BACKGROUND AND AIM: Epidemiological evidence on the relationship between exposure to volatile organic compounds (VOCs), both single and mixed, and serum lipid levels is limited, and their relationship remains unclear. Our study aimed to investigate the associations of exposure to VOCs with serum lipid levels in the US adult population. METHODS AND RESULTS: The study examined the association of 16 VOC levels (2-methylhippuric acid, 3- and 4-methylhippuric acid, N-acetyl-S-(2-carbamoylethyl)-L-cysteine, N-acetyl-S-(N-methylcarbamoyl)-L-cysteine, 2-aminothiazoline-4-carboxylic acid, N-acetyl-S-(benzyl)-L-cysteine, N-acetyl-S-(n-propyl)-L-cysteine, N-acetyl-S-(2-carboxyethyl)-L-cysteine, N-acetyl-S-(2-cyanoethyl)-L-cysteine, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine, N-acetyl-S-(2-hydroxypropyl)-L-cysteine. N-Acetyl-S-(3-hydroxypropyl)-L-cysteine, mandelic acid, N-acetyl-S-(4-hydroxy-2-butenyl)-L-cysteine, phenylglyoxylic acid and N-acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine) with total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) using data from the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2015, and a total of 1410 adults were enrolled. The association was evaluated by Bayesian kernel machine regression (BKMR), multiple linear regression and weighted quantile sum (WQS) regression. In BKMR analysis, exposure to VOCs is positively correlated with levels of TC, TG, and LDL-C. However, statistical significance was observed only for the impact on TG. Our linear regression analysis and WQS regression generally support the BKMR results. Several VOCs were positively associated with serum lipid profiles (e.g., the ln-transformed level of mandelic acid (MA) displayed an increase in estimated changes of 7.01 (95% CIs: 2.78, 11.24) mg/dL for TC level), even after the effective number of tests for multiple testing (P < 0.05). CONCLUSIONS: Exposure to VOCs was associated with serum lipids, and more studies are needed to confirm these findings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12944-023-01895-z.