Cargando…
Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections
PURPOSE: The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibac...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422991/ https://www.ncbi.nlm.nih.gov/pubmed/37576521 http://dx.doi.org/10.2147/IDR.S425398 |
_version_ | 1785089348843077632 |
---|---|
author | Wei, Juanru Zhang, Cong Ma, Wei Ma, Juncheng Liu, Zhenzhen Ren, Fucai Li, Ning |
author_facet | Wei, Juanru Zhang, Cong Ma, Wei Ma, Juncheng Liu, Zhenzhen Ren, Fucai Li, Ning |
author_sort | Wei, Juanru |
collection | PubMed |
description | PURPOSE: The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibacterial activities. METHODS: T. chinense powder was extracted with 5 solvents of different polarity (ethyl alcohol, petroleum ether, ethyl acetate, n-butyl alcohol and double distilled water), and their antibacterial activities were tested. The Broth dilution method was used to evaluate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of highly active plant extracts with a concentration of 1g/mL. The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcriptome of S. aureus. RESULTS: The ethanol extract coded as BRY, only inhibited S. aureus, whereas the ethyl acetate extract coded as BY2 showed inhibitory effect on all the tested bacteria. The MIC of BRY on S. aureus was 128 mg/mL, and the MBC was 512 mg/mL. The MIC of BY2 against S. aureus, S. pneumoniae, S. pyogenes and H. influenzae were 8 mg/mL, 4 mg/mL, 4 mg/mL, and 4 mg/mL, respectively. The MBC of BY2 for these four bacteria ranged from 4 to 256 mg/mL. Mechanism studies have shown that BRY and BY2 have an impact on anti-formation of biofilms at MIC concentrations. Transcriptome sequencing results showed that 531 genes were up-regulated and 340 genes showed down-regulated expression in S. aureus after BY2 treatment. CONCLUSION: BY2 has a broader antibacterial spectrum than BRY. Meanwhile, the inhibitory effect of BY2 on S. aureus is better than BRY. The mechanism of BY2 against S. aureus may relate to its inhibition of ribosome synthesis, restriction of key enzymes of citric acid cycle, decrease of pathogenicity and influence on biofilm formation. The results confirmed that BY2 was the main antibacterial part of T. chinense, which can be used as a source of antibacterial agents. |
format | Online Article Text |
id | pubmed-10422991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-104229912023-08-13 Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections Wei, Juanru Zhang, Cong Ma, Wei Ma, Juncheng Liu, Zhenzhen Ren, Fucai Li, Ning Infect Drug Resist Original Research PURPOSE: The drug resistance of Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes and Haemophilus influenzae has become more and more serious, and it is urgent to seek new antibacterial drugs. In this study, Thesium chinense Turcz. extracts were tested for its potential antibacterial activities. METHODS: T. chinense powder was extracted with 5 solvents of different polarity (ethyl alcohol, petroleum ether, ethyl acetate, n-butyl alcohol and double distilled water), and their antibacterial activities were tested. The Broth dilution method was used to evaluate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of highly active plant extracts with a concentration of 1g/mL. The inhibitory activity of this extract on biofilm formation was investigated. Afterwards, we investigated its effect on the transcriptome of S. aureus. RESULTS: The ethanol extract coded as BRY, only inhibited S. aureus, whereas the ethyl acetate extract coded as BY2 showed inhibitory effect on all the tested bacteria. The MIC of BRY on S. aureus was 128 mg/mL, and the MBC was 512 mg/mL. The MIC of BY2 against S. aureus, S. pneumoniae, S. pyogenes and H. influenzae were 8 mg/mL, 4 mg/mL, 4 mg/mL, and 4 mg/mL, respectively. The MBC of BY2 for these four bacteria ranged from 4 to 256 mg/mL. Mechanism studies have shown that BRY and BY2 have an impact on anti-formation of biofilms at MIC concentrations. Transcriptome sequencing results showed that 531 genes were up-regulated and 340 genes showed down-regulated expression in S. aureus after BY2 treatment. CONCLUSION: BY2 has a broader antibacterial spectrum than BRY. Meanwhile, the inhibitory effect of BY2 on S. aureus is better than BRY. The mechanism of BY2 against S. aureus may relate to its inhibition of ribosome synthesis, restriction of key enzymes of citric acid cycle, decrease of pathogenicity and influence on biofilm formation. The results confirmed that BY2 was the main antibacterial part of T. chinense, which can be used as a source of antibacterial agents. Dove 2023-08-08 /pmc/articles/PMC10422991/ /pubmed/37576521 http://dx.doi.org/10.2147/IDR.S425398 Text en © 2023 Wei et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Wei, Juanru Zhang, Cong Ma, Wei Ma, Juncheng Liu, Zhenzhen Ren, Fucai Li, Ning Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title | Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title_full | Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title_fullStr | Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title_full_unstemmed | Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title_short | Antibacterial Activity of Thesium chinense Turcz Extract Against Bacteria Associated with Upper Respiratory Tract Infections |
title_sort | antibacterial activity of thesium chinense turcz extract against bacteria associated with upper respiratory tract infections |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422991/ https://www.ncbi.nlm.nih.gov/pubmed/37576521 http://dx.doi.org/10.2147/IDR.S425398 |
work_keys_str_mv | AT weijuanru antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT zhangcong antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT mawei antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT majuncheng antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT liuzhenzhen antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT renfucai antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections AT lining antibacterialactivityofthesiumchinenseturczextractagainstbacteriaassociatedwithupperrespiratorytractinfections |