Cargando…

TALAIA: a 3D visual dictionary for protein structures

MOTIVATION: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on phy...

Descripción completa

Detalles Bibliográficos
Autores principales: Alemany-Chavarria, Mercè, Rodríguez-Guerra, Jaime, Maréchal, Jean-Didier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423020/
https://www.ncbi.nlm.nih.gov/pubmed/37549048
http://dx.doi.org/10.1093/bioinformatics/btad476
_version_ 1785089356108660736
author Alemany-Chavarria, Mercè
Rodríguez-Guerra, Jaime
Maréchal, Jean-Didier
author_facet Alemany-Chavarria, Mercè
Rodríguez-Guerra, Jaime
Maréchal, Jean-Didier
author_sort Alemany-Chavarria, Mercè
collection PubMed
description MOTIVATION: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations. TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction. RESULTS: We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia.
format Online
Article
Text
id pubmed-10423020
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-104230202023-08-13 TALAIA: a 3D visual dictionary for protein structures Alemany-Chavarria, Mercè Rodríguez-Guerra, Jaime Maréchal, Jean-Didier Bioinformatics Applications Note MOTIVATION: Graphical analysis of the molecular structure of proteins can be very complex. Full-atom representations retain most geometric information but are generally crowded, and key structural patterns can be challenging to identify. Non-full-atom representations could be more instructive on physicochemical aspects but be insufficiently detailed regarding shapes (e.g. entity beans-like models in coarse grain approaches) or simple properties of amino acids (e.g. representation of superficial electrostatic properties). In this work, we present TALAIA a visual dictionary that aims to provide another layer of structural representations. TALAIA offers a visual grammar that combines simple representations of amino acids while retaining their general geometry and physicochemical properties. It uses unique objects, with differentiated shapes and colors to represent amino acids. It makes easier to spot crucial molecular information, including patches of amino acids or key interactions between side chains. Most conventions used in TALAIA are standard in chemistry and biochemistry, so experimentalists and modelers can rapidly grasp the meaning of any TALAIA depiction. RESULTS: We propose TALAIA as a tool that renders protein structures and encodes structure and physicochemical aspects as a simple visual grammar. The approach is fast, highly informative, and intuitive, allowing the identification of possible interactions, hydrophobic patches, and other characteristic structural features at first glance. The first implementation of TALAIA can be found at https://github.com/insilichem/talaia. Oxford University Press 2023-08-07 /pmc/articles/PMC10423020/ /pubmed/37549048 http://dx.doi.org/10.1093/bioinformatics/btad476 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Note
Alemany-Chavarria, Mercè
Rodríguez-Guerra, Jaime
Maréchal, Jean-Didier
TALAIA: a 3D visual dictionary for protein structures
title TALAIA: a 3D visual dictionary for protein structures
title_full TALAIA: a 3D visual dictionary for protein structures
title_fullStr TALAIA: a 3D visual dictionary for protein structures
title_full_unstemmed TALAIA: a 3D visual dictionary for protein structures
title_short TALAIA: a 3D visual dictionary for protein structures
title_sort talaia: a 3d visual dictionary for protein structures
topic Applications Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423020/
https://www.ncbi.nlm.nih.gov/pubmed/37549048
http://dx.doi.org/10.1093/bioinformatics/btad476
work_keys_str_mv AT alemanychavarriamerce talaiaa3dvisualdictionaryforproteinstructures
AT rodriguezguerrajaime talaiaa3dvisualdictionaryforproteinstructures
AT marechaljeandidier talaiaa3dvisualdictionaryforproteinstructures