Cargando…
Flame (v2.0): advanced integration and interpretation of functional enrichment results from multiple sources
: Summary: Functional enrichment is the process of identifying implicated functional terms from a given input list of genes or proteins. In this article, we present Flame (v2.0), a web tool which offers a combinatorial approach through merging and visualizing results from widely used functional enr...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423032/ https://www.ncbi.nlm.nih.gov/pubmed/37540207 http://dx.doi.org/10.1093/bioinformatics/btad490 |
Sumario: | : Summary: Functional enrichment is the process of identifying implicated functional terms from a given input list of genes or proteins. In this article, we present Flame (v2.0), a web tool which offers a combinatorial approach through merging and visualizing results from widely used functional enrichment applications while also allowing various flexible input options. In this version, Flame utilizes the aGOtool, g: Profiler, WebGestalt, and Enrichr pipelines and presents their outputs separately or in combination following a visual analytics approach. For intuitive representations and easier interpretation, it uses interactive plots such as parameterizable networks, heatmaps, barcharts, and scatter plots. Users can also: (i) handle multiple protein/gene lists and analyse union and intersection sets simultaneously through interactive UpSet plots, (ii) automatically extract genes and proteins from free text through text-mining and Named Entity Recognition (NER) techniques, (iii) upload single nucleotide polymorphisms (SNPs) and extract their relative genes, or (iv) analyse multiple lists of differentially expressed proteins/genes after selecting them interactively from a parameterizable volcano plot. Compared to the previous version of 197 supported organisms, Flame (v2.0) currently allows enrichment for 14 436 organisms. AVAILABILITY AND IMPLEMENTATION: Web Application: http://flame.pavlopouloslab.info. Code: https://github.com/PavlopoulosLab/Flame. Docker: https://hub.docker.com/r/pavlopouloslab/flame. |
---|