Cargando…
Causal modelling of heavy-tailed variables and confounders with application to river flow
Confounding variables are a recurrent challenge for causal discovery and inference. In many situations, complex causal mechanisms only manifest themselves in extreme events, or take simpler forms in the extremes. Stimulated by data on extreme river flows and precipitation, we introduce a new causal...
Autores principales: | Pasche, Olivier C., Chavez-Demoulin, Valérie, Davison, Anthony C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423152/ https://www.ncbi.nlm.nih.gov/pubmed/37581203 http://dx.doi.org/10.1007/s10687-022-00456-4 |
Ejemplares similares
-
Confounding Effects of Phase Delays on Causality Estimation
por: Vakorin, Vasily A., et al.
Publicado: (2013) -
Frameworks for estimating causal effects in observational settings: comparing confounder adjustment and instrumental variables
por: Zawadzki, Roy S., et al.
Publicado: (2023) -
Causal Mediation Analysis in the Presence of Post-treatment Confounding Variables: A Monte Carlo Simulation Study
por: Kisbu-Sakarya, Yasemin, et al.
Publicado: (2020) -
Safety of Ibuprofen in Patients With COVID-19: Causal or Confounded?
por: Sodhi, Mohit, et al.
Publicado: (2020) -
Latent variable modeling and applications to causality /
Publicado: (1997)