Cargando…

An integrated wet-spinning system for continuous fabrication of high-strength nanocellulose long filaments

The continuous production of high-strength nanocellulose long filaments (NCLFs) is critical in natural fiber-reinforced polymer composites. Despite the widespread availability of numerous filament production processes, the cost-effective and continuous fabrication of high-strength NCLFs on a large s...

Descripción completa

Detalles Bibliográficos
Autores principales: Panicker, Pooja S., Kim, Hyun Chan, Kim, Jaehwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423198/
https://www.ncbi.nlm.nih.gov/pubmed/37573438
http://dx.doi.org/10.1038/s41598-023-40462-5
Descripción
Sumario:The continuous production of high-strength nanocellulose long filaments (NCLFs) is critical in natural fiber-reinforced polymer composites. Despite the widespread availability of numerous filament production processes, the cost-effective and continuous fabrication of high-strength NCLFs on a large scale remains an ongoing challenge. Herein, we present an integrated wet-spinning system by incorporating a few previously researched filament production techniques to mass fabricate high-strength continuous NCLFs. The spinning speed is increased to improve NCLF productivity, and the bobbin winder speeds, collector bobbin winder location, and NCLF drying conditions are tuned. At the spinning speed of 510 cm/min, a production rate of 4.99 m/min is achieved, five times higher than the productivity of the former pilot system (0.92 m/min). Moreover, an AC electric field and mechanical stretching are introduced to highlight the versatility of the proposed integrated wet-spinning system, thereby enhancing the mechanical properties of NCLFs.