Cargando…

Deep learning for obstructive sleep apnea diagnosis based on single channel oximetry

Obstructive sleep apnea (OSA) is a serious medical condition with a high prevalence, although diagnosis remains a challenge. Existing home sleep tests may provide acceptable diagnosis performance but have shown several limitations. In this retrospective study, we used 12,923 polysomnography recordin...

Descripción completa

Detalles Bibliográficos
Autores principales: Levy, Jeremy, Álvarez, Daniel, Del Campo, Félix, Behar, Joachim A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423260/
https://www.ncbi.nlm.nih.gov/pubmed/37573327
http://dx.doi.org/10.1038/s41467-023-40604-3
Descripción
Sumario:Obstructive sleep apnea (OSA) is a serious medical condition with a high prevalence, although diagnosis remains a challenge. Existing home sleep tests may provide acceptable diagnosis performance but have shown several limitations. In this retrospective study, we used 12,923 polysomnography recordings from six independent databases to develop and evaluate a deep learning model, called OxiNet, for the estimation of the apnea-hypopnea index from the oximetry signal. We evaluated OxiNet performance across ethnicity, age, sex, and comorbidity. OxiNet missed 0.2% of all test set moderate-to-severe OSA patients against 21% for the best benchmark.