Cargando…
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423266/ https://www.ncbi.nlm.nih.gov/pubmed/37573446 http://dx.doi.org/10.1038/s41598-023-40218-1 |
_version_ | 1785089412184408064 |
---|---|
author | Ferrández, Maria C. Golla, Sandeep S. V. Eertink, Jakoba J. de Vries, Bart M. Lugtenburg, Pieternella J. Wiegers, Sanne E. Zwezerijnen, Gerben J. C. Pieplenbosch, Simone Kurch, Lars Hüttmann, Andreas Hanoun, Christine Dührsen, Ulrich de Vet, Henrica C. W. Zijlstra, Josée M. Boellaard, Ronald |
author_facet | Ferrández, Maria C. Golla, Sandeep S. V. Eertink, Jakoba J. de Vries, Bart M. Lugtenburg, Pieternella J. Wiegers, Sanne E. Zwezerijnen, Gerben J. C. Pieplenbosch, Simone Kurch, Lars Hüttmann, Andreas Hanoun, Christine Dührsen, Ulrich de Vet, Henrica C. W. Zijlstra, Josée M. Boellaard, Ronald |
author_sort | Ferrández, Maria C. |
collection | PubMed |
description | Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL (18)F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax(bulk) was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL. |
format | Online Article Text |
id | pubmed-10423266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104232662023-08-14 An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients Ferrández, Maria C. Golla, Sandeep S. V. Eertink, Jakoba J. de Vries, Bart M. Lugtenburg, Pieternella J. Wiegers, Sanne E. Zwezerijnen, Gerben J. C. Pieplenbosch, Simone Kurch, Lars Hüttmann, Andreas Hanoun, Christine Dührsen, Ulrich de Vet, Henrica C. W. Zijlstra, Josée M. Boellaard, Ronald Sci Rep Article Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL (18)F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax(bulk) was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL. Nature Publishing Group UK 2023-08-12 /pmc/articles/PMC10423266/ /pubmed/37573446 http://dx.doi.org/10.1038/s41598-023-40218-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Ferrández, Maria C. Golla, Sandeep S. V. Eertink, Jakoba J. de Vries, Bart M. Lugtenburg, Pieternella J. Wiegers, Sanne E. Zwezerijnen, Gerben J. C. Pieplenbosch, Simone Kurch, Lars Hüttmann, Andreas Hanoun, Christine Dührsen, Ulrich de Vet, Henrica C. W. Zijlstra, Josée M. Boellaard, Ronald An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title | An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title_full | An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title_fullStr | An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title_full_unstemmed | An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title_short | An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients |
title_sort | artificial intelligence method using fdg pet to predict treatment outcome in diffuse large b cell lymphoma patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423266/ https://www.ncbi.nlm.nih.gov/pubmed/37573446 http://dx.doi.org/10.1038/s41598-023-40218-1 |
work_keys_str_mv | AT ferrandezmariac anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT gollasandeepsv anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT eertinkjakobaj anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT devriesbartm anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT lugtenburgpieternellaj anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT wiegerssannee anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT zwezerijnengerbenjc anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT pieplenboschsimone anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT kurchlars anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT huttmannandreas anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT hanounchristine anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT duhrsenulrich anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT devethenricacw anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT zijlstrajoseem anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT boellaardronald anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT ferrandezmariac artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT gollasandeepsv artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT eertinkjakobaj artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT devriesbartm artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT lugtenburgpieternellaj artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT wiegerssannee artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT zwezerijnengerbenjc artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT pieplenboschsimone artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT kurchlars artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT huttmannandreas artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT hanounchristine artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT duhrsenulrich artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT devethenricacw artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT zijlstrajoseem artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients AT boellaardronald artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients |