Cargando…

An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients

Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrández, Maria C., Golla, Sandeep S. V., Eertink, Jakoba J., de Vries, Bart M., Lugtenburg, Pieternella J., Wiegers, Sanne E., Zwezerijnen, Gerben J. C., Pieplenbosch, Simone, Kurch, Lars, Hüttmann, Andreas, Hanoun, Christine, Dührsen, Ulrich, de Vet, Henrica C. W., Zijlstra, Josée M., Boellaard, Ronald
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423266/
https://www.ncbi.nlm.nih.gov/pubmed/37573446
http://dx.doi.org/10.1038/s41598-023-40218-1
_version_ 1785089412184408064
author Ferrández, Maria C.
Golla, Sandeep S. V.
Eertink, Jakoba J.
de Vries, Bart M.
Lugtenburg, Pieternella J.
Wiegers, Sanne E.
Zwezerijnen, Gerben J. C.
Pieplenbosch, Simone
Kurch, Lars
Hüttmann, Andreas
Hanoun, Christine
Dührsen, Ulrich
de Vet, Henrica C. W.
Zijlstra, Josée M.
Boellaard, Ronald
author_facet Ferrández, Maria C.
Golla, Sandeep S. V.
Eertink, Jakoba J.
de Vries, Bart M.
Lugtenburg, Pieternella J.
Wiegers, Sanne E.
Zwezerijnen, Gerben J. C.
Pieplenbosch, Simone
Kurch, Lars
Hüttmann, Andreas
Hanoun, Christine
Dührsen, Ulrich
de Vet, Henrica C. W.
Zijlstra, Josée M.
Boellaard, Ronald
author_sort Ferrández, Maria C.
collection PubMed
description Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL (18)F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax(bulk) was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL.
format Online
Article
Text
id pubmed-10423266
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104232662023-08-14 An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients Ferrández, Maria C. Golla, Sandeep S. V. Eertink, Jakoba J. de Vries, Bart M. Lugtenburg, Pieternella J. Wiegers, Sanne E. Zwezerijnen, Gerben J. C. Pieplenbosch, Simone Kurch, Lars Hüttmann, Andreas Hanoun, Christine Dührsen, Ulrich de Vet, Henrica C. W. Zijlstra, Josée M. Boellaard, Ronald Sci Rep Article Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) baseline scans to predict the probability of time-to-progression (TTP) within 2 years and compare it with the International Prognostic Index (IPI), i.e. a clinically used score. 296 DLBCL (18)F-FDG PET/CT baseline scans collected from a prospective clinical trial (HOVON-84) were analysed. Cross-validation was performed using coronal and sagittal MIPs. An external dataset (340 DLBCL patients) was used to validate the model. Association between the probabilities, metabolic tumour volume and Dmax(bulk) was assessed. Probabilities for PET scans with synthetically removed tumors were also assessed. The CNN provided a 2-year TTP prediction with an area under the curve (AUC) of 0.74, outperforming the IPI-based model (AUC = 0.68). Furthermore, high probabilities (> 0.6) of the original MIPs were considerably decreased after removing the tumours (< 0.4, generally). These findings suggest that MIP-based CNNs are able to predict treatment outcome in DLBCL. Nature Publishing Group UK 2023-08-12 /pmc/articles/PMC10423266/ /pubmed/37573446 http://dx.doi.org/10.1038/s41598-023-40218-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Ferrández, Maria C.
Golla, Sandeep S. V.
Eertink, Jakoba J.
de Vries, Bart M.
Lugtenburg, Pieternella J.
Wiegers, Sanne E.
Zwezerijnen, Gerben J. C.
Pieplenbosch, Simone
Kurch, Lars
Hüttmann, Andreas
Hanoun, Christine
Dührsen, Ulrich
de Vet, Henrica C. W.
Zijlstra, Josée M.
Boellaard, Ronald
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title_full An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title_fullStr An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title_full_unstemmed An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title_short An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
title_sort artificial intelligence method using fdg pet to predict treatment outcome in diffuse large b cell lymphoma patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423266/
https://www.ncbi.nlm.nih.gov/pubmed/37573446
http://dx.doi.org/10.1038/s41598-023-40218-1
work_keys_str_mv AT ferrandezmariac anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT gollasandeepsv anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT eertinkjakobaj anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT devriesbartm anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT lugtenburgpieternellaj anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT wiegerssannee anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT zwezerijnengerbenjc anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT pieplenboschsimone anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT kurchlars anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT huttmannandreas anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT hanounchristine anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT duhrsenulrich anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT devethenricacw anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT zijlstrajoseem anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT boellaardronald anartificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT ferrandezmariac artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT gollasandeepsv artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT eertinkjakobaj artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT devriesbartm artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT lugtenburgpieternellaj artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT wiegerssannee artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT zwezerijnengerbenjc artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT pieplenboschsimone artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT kurchlars artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT huttmannandreas artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT hanounchristine artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT duhrsenulrich artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT devethenricacw artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT zijlstrajoseem artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients
AT boellaardronald artificialintelligencemethodusingfdgpettopredicttreatmentoutcomeindiffuselargebcelllymphomapatients