Cargando…
An artificial intelligence method using FDG PET to predict treatment outcome in diffuse large B cell lymphoma patients
Convolutional neural networks (CNNs) may improve response prediction in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to investigate the feasibility of a CNN using maximum intensity projection (MIP) images from (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET...
Autores principales: | Ferrández, Maria C., Golla, Sandeep S. V., Eertink, Jakoba J., de Vries, Bart M., Lugtenburg, Pieternella J., Wiegers, Sanne E., Zwezerijnen, Gerben J. C., Pieplenbosch, Simone, Kurch, Lars, Hüttmann, Andreas, Hanoun, Christine, Dührsen, Ulrich, de Vet, Henrica C. W., Zijlstra, Josée M., Boellaard, Ronald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423266/ https://www.ncbi.nlm.nih.gov/pubmed/37573446 http://dx.doi.org/10.1038/s41598-023-40218-1 |
Ejemplares similares
-
Combatting the effect of image reconstruction settings on lymphoma [(18)F]FDG PET metabolic tumor volume assessment using various segmentation methods
por: Ferrández, Maria C., et al.
Publicado: (2022) -
Reproducibility of [18F]FDG PET/CT liver SUV as reference or normalisation factor
por: Zwezerijnen, Gerben J. C., et al.
Publicado: (2022) -
Baseline radiomics features and MYC rearrangement status predict progression in aggressive B-cell lymphoma
por: Eertink, Jakoba J., et al.
Publicado: (2022) -
Sensitivity of an AI method for [(18)F]FDG PET/CT outcome prediction of diffuse large B-cell lymphoma patients to image reconstruction protocols
por: Ferrández, Maria C., et al.
Publicado: (2023) -
Comparing lesion and feature selections to predict progression in newly diagnosed DLBCL patients with FDG PET/CT radiomics features
por: Eertink, Jakoba J., et al.
Publicado: (2022)