Cargando…

Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion

Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stabili...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Wenzhe, Chen, Zheng, Guo, Wen, Mao, Wei, Liu, Yi, Guo, Yunna, Chen, Jingzhao, Huang, Rui, Kang, Lin, Ma, Yiwen, Yan, Qisheng, Ye, Jinyu, Cui, Chunyu, Zhang, Liqiang, Wang, Peng, Xu, Xin, Zhang, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423280/
https://www.ncbi.nlm.nih.gov/pubmed/37573371
http://dx.doi.org/10.1038/s41467-023-40689-w
_version_ 1785089416019050496
author Niu, Wenzhe
Chen, Zheng
Guo, Wen
Mao, Wei
Liu, Yi
Guo, Yunna
Chen, Jingzhao
Huang, Rui
Kang, Lin
Ma, Yiwen
Yan, Qisheng
Ye, Jinyu
Cui, Chunyu
Zhang, Liqiang
Wang, Peng
Xu, Xin
Zhang, Bo
author_facet Niu, Wenzhe
Chen, Zheng
Guo, Wen
Mao, Wei
Liu, Yi
Guo, Yunna
Chen, Jingzhao
Huang, Rui
Kang, Lin
Ma, Yiwen
Yan, Qisheng
Ye, Jinyu
Cui, Chunyu
Zhang, Liqiang
Wang, Peng
Xu, Xin
Zhang, Bo
author_sort Niu, Wenzhe
collection PubMed
description Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FE(propanol)) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FE(propanol) above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm(2) electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion.
format Online
Article
Text
id pubmed-10423280
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104232802023-08-14 Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion Niu, Wenzhe Chen, Zheng Guo, Wen Mao, Wei Liu, Yi Guo, Yunna Chen, Jingzhao Huang, Rui Kang, Lin Ma, Yiwen Yan, Qisheng Ye, Jinyu Cui, Chunyu Zhang, Liqiang Wang, Peng Xu, Xin Zhang, Bo Nat Commun Article Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FE(propanol)) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FE(propanol) above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm(2) electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion. Nature Publishing Group UK 2023-08-12 /pmc/articles/PMC10423280/ /pubmed/37573371 http://dx.doi.org/10.1038/s41467-023-40689-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Niu, Wenzhe
Chen, Zheng
Guo, Wen
Mao, Wei
Liu, Yi
Guo, Yunna
Chen, Jingzhao
Huang, Rui
Kang, Lin
Ma, Yiwen
Yan, Qisheng
Ye, Jinyu
Cui, Chunyu
Zhang, Liqiang
Wang, Peng
Xu, Xin
Zhang, Bo
Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title_full Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title_fullStr Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title_full_unstemmed Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title_short Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
title_sort pb-rich cu grain boundary sites for selective co-to-n-propanol electroconversion
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423280/
https://www.ncbi.nlm.nih.gov/pubmed/37573371
http://dx.doi.org/10.1038/s41467-023-40689-w
work_keys_str_mv AT niuwenzhe pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT chenzheng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT guowen pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT maowei pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT liuyi pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT guoyunna pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT chenjingzhao pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT huangrui pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT kanglin pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT mayiwen pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT yanqisheng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT yejinyu pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT cuichunyu pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT zhangliqiang pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT wangpeng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT xuxin pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion
AT zhangbo pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion