Cargando…
Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion
Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stabili...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423280/ https://www.ncbi.nlm.nih.gov/pubmed/37573371 http://dx.doi.org/10.1038/s41467-023-40689-w |
_version_ | 1785089416019050496 |
---|---|
author | Niu, Wenzhe Chen, Zheng Guo, Wen Mao, Wei Liu, Yi Guo, Yunna Chen, Jingzhao Huang, Rui Kang, Lin Ma, Yiwen Yan, Qisheng Ye, Jinyu Cui, Chunyu Zhang, Liqiang Wang, Peng Xu, Xin Zhang, Bo |
author_facet | Niu, Wenzhe Chen, Zheng Guo, Wen Mao, Wei Liu, Yi Guo, Yunna Chen, Jingzhao Huang, Rui Kang, Lin Ma, Yiwen Yan, Qisheng Ye, Jinyu Cui, Chunyu Zhang, Liqiang Wang, Peng Xu, Xin Zhang, Bo |
author_sort | Niu, Wenzhe |
collection | PubMed |
description | Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FE(propanol)) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FE(propanol) above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm(2) electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion. |
format | Online Article Text |
id | pubmed-10423280 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104232802023-08-14 Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion Niu, Wenzhe Chen, Zheng Guo, Wen Mao, Wei Liu, Yi Guo, Yunna Chen, Jingzhao Huang, Rui Kang, Lin Ma, Yiwen Yan, Qisheng Ye, Jinyu Cui, Chunyu Zhang, Liqiang Wang, Peng Xu, Xin Zhang, Bo Nat Commun Article Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C(3) species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an “atomic size misfit” strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FE(propanol)) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FE(propanol) above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm(2) electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C–C coupling ability, thus promoting the CO-to-n-propanol conversion. Nature Publishing Group UK 2023-08-12 /pmc/articles/PMC10423280/ /pubmed/37573371 http://dx.doi.org/10.1038/s41467-023-40689-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Niu, Wenzhe Chen, Zheng Guo, Wen Mao, Wei Liu, Yi Guo, Yunna Chen, Jingzhao Huang, Rui Kang, Lin Ma, Yiwen Yan, Qisheng Ye, Jinyu Cui, Chunyu Zhang, Liqiang Wang, Peng Xu, Xin Zhang, Bo Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title | Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title_full | Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title_fullStr | Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title_full_unstemmed | Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title_short | Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion |
title_sort | pb-rich cu grain boundary sites for selective co-to-n-propanol electroconversion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423280/ https://www.ncbi.nlm.nih.gov/pubmed/37573371 http://dx.doi.org/10.1038/s41467-023-40689-w |
work_keys_str_mv | AT niuwenzhe pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT chenzheng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT guowen pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT maowei pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT liuyi pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT guoyunna pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT chenjingzhao pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT huangrui pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT kanglin pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT mayiwen pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT yanqisheng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT yejinyu pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT cuichunyu pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT zhangliqiang pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT wangpeng pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT xuxin pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion AT zhangbo pbrichcugrainboundarysitesforselectivecotonpropanolelectroconversion |