Cargando…
Deep Q-learning to globally optimize a k-D parameter search for medical imaging
BACKGROUND: Estimation of the global optima of multiple model parameters is valuable for precisely extracting parameters that characterize a physical environment. This is especially useful for imaging purposes, to form reliable, meaningful physical images with good reproducibility. However, it is ch...
Autores principales: | Zhang, Hongmei, Liang, Songshi, Matkovic, Luke A., Momin, Shadab, Wang, Kai, Yang, Xiaofeng, Insana, Michael F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423342/ https://www.ncbi.nlm.nih.gov/pubmed/37581036 http://dx.doi.org/10.21037/qims-22-1147 |
Ejemplares similares
-
Deep learning-based parameter estimation in fetal diffusion-weighted MRI
por: Karimi, Davood, et al.
Publicado: (2021) -
Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions
por: Hu, Mingzhe, et al.
Publicado: (2023) -
Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
por: Ohnishi, Shota, et al.
Publicado: (2019) -
Deep learning classification of urinary sediment crystals with optimal parameter tuning
por: Nagai, Takahiro, et al.
Publicado: (2022) -
Deep Learning for Search
por: Teofili, Tommaso
Publicado: (2019)