Cargando…
Context-aware augmentation for liver lesion segmentation: shape uniformity, expansion limit and fusion strategy
BACKGROUND: Data augmentation with context has been an effective way to increase the robustness and generalizability of deep learning models. However, to our knowledge, shape uniformity, expansion limit, and fusion strategy of context have yet to be comprehensively studied, particularly in lesion se...
Autores principales: | He, Qiang, Duan, Yujie, Yang, Zhiyu, Wang, Yaxuan, Yang, Liyu, Bai, Lin, Zhao, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423356/ https://www.ncbi.nlm.nih.gov/pubmed/37581084 http://dx.doi.org/10.21037/qims-22-1399 |
Ejemplares similares
-
Uniform gradient expansions
por: Giovannini, Massimo
Publicado: (2014) -
New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation
por: Basaran, Berke Doga, et al.
Publicado: (2022) -
A spine segmentation method based on scene aware fusion network
por: Yilizati-Yilihamu, Elzat Elham, et al.
Publicado: (2023) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Time-Aware Uniformization of Winning Strategies
por: Le Roux, Stéphane
Publicado: (2020)