Cargando…
CT-based deep learning segmentation of ovarian cancer and the stability of the extracted radiomics features
BACKGROUND: Radiomics analysis could provide complementary tissue characterization in ovarian cancer (OC). However, OC segmentation required in radiomics analysis is time-consuming and labour-intensive. In this study, we aim to evaluate the performance of deep learning-based segmentation of OC on co...
Autores principales: | Wang, Yiang, Wang, Mandi, Cao, Peng, Wong, Esther M. F., Ho, Grace, Lam, Tina P. W., Han, Lujun, Lee, Elaine Y. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423396/ https://www.ncbi.nlm.nih.gov/pubmed/37581064 http://dx.doi.org/10.21037/qims-22-1135 |
Ejemplares similares
-
Computed Tomographic Radiomics in Differentiating Histologic Subtypes of Epithelial Ovarian Carcinoma
por: Wang, Mandi, et al.
Publicado: (2022) -
Stability analysis of CT radiomic features with respect to segmentation variation in oropharyngeal cancer
por: Liu, Rongjie, et al.
Publicado: (2019) -
Assessing radiomics feature stability with simulated CT acquisitions
por: Flouris, Kyriakos, et al.
Publicado: (2022) -
Multiple U-Net-Based Automatic Segmentations and Radiomics Feature Stability on Ultrasound Images for Patients With Ovarian Cancer
por: Jin, Juebin, et al.
Publicado: (2021) -
Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation
por: Thulasi Seetha, Sithin, et al.
Publicado: (2023)