Cargando…
FXN gene methylation determines carrier status in Friedreich ataxia
BACKGROUND: Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat (GAA-TRE) in intron 1 of the FXN gene. Some patients are compound heterozygous for the GAA-TRE and another FXN pathogenic variant. Detection of the GAA-TRE in the heterozygous state, occasiona...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423546/ https://www.ncbi.nlm.nih.gov/pubmed/36635061 http://dx.doi.org/10.1136/jmg-2022-108742 |
Sumario: | BACKGROUND: Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat (GAA-TRE) in intron 1 of the FXN gene. Some patients are compound heterozygous for the GAA-TRE and another FXN pathogenic variant. Detection of the GAA-TRE in the heterozygous state, occasionally technically challenging, is essential for diagnosing compound heterozygotes and asymptomatic carriers. OBJECTIVE: We explored if the FRDA differentially methylated region (FRDA-DMR) in intron 1, which is hypermethylated in cis with the GAA-TRE, effectively detects heterozygous GAA-TRE. METHODS: FXN DNA methylation was assayed by targeted bisulfite deep sequencing using the Illumina platform. RESULTS: FRDA-DMR methylation effectively identified a cohort of known heterozygous carriers of the GAA-TRE. In an individual with clinical features of FRDA, commercial testing showed a paternally inherited pathogenic FXN initiation codon variant but no GAA-TRE. Methylation in the FRDA-DMR effectively identified the proband, his mother and various maternal relatives as heterozygous carriers of the GAA-TRE, thus confirming the diagnosis of FRDA. CONCLUSION: FXN DNA methylation reliably detects the GAA-TRE in the heterozygous state and offers a robust alternative strategy to diagnose FRDA due to compound heterozygosity and to identify asymptomatic heterozygous carriers of the GAA-TRE. |
---|